Skip to main content
Log in

Removal of l-alanine from the production of l-2-aminobutyric acid by introduction of alanine racemase and d-amino acid oxidase

  • Biotechnological Products and Process Engineering
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

l-2-Aminobutyric acid can be synthesized in a transamination reaction from l-threonine and l-aspartic acid as substrates by the action of threonine deaminase and aromatic aminotransferase, but the by-product l-alanine was produced simultaneously. A small amount of l-alanine increased the complexity of the l-2-aminobutyric acid recovery process because of their extreme similarity in physical and chemical properties. Acetolactate synthase has been introduced to remove the pyruvate intermediate for reducing the l-alanine concentration partially. To eliminate the remnant l-alanine, alanine racemase of Bacillus subtilis in combination with d-amino acid oxidase of Rhodotorula gracilis or Trigonopsis variabilis respectively was introduced into the reaction system for the l-2-aminobutyric acid synthesis. l-Alanine could be completely removed by the action of alanine racemase of B. subtilis and d-amino acid oxidase of R. gracilis; thereby, high-purity l-2-aminobutyric acid was achieved. The results revealed that alanine racemase could discriminate effectively between l-alanine and l-2-aminobutyric acid, and selectively catalyzed l-alanine to d-alanine reversibly. d-Amino acid oxidase then catalyzed d-alanine to pyruvate stereoselectively. Furthermore, this method was also successfully used to remove the by-product l-alanine in the production of other neutral amino acids such as l-tertiary leucine and l-valine, suggesting that multienzymatic whole-cell catalysis can be employed to provide high purity products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Bhor VM, Dev S, Vasanthakumar GR, Kumar P, Sinha S, Surolia A (2006) Broad substrate stereospecificity of the Mycobacterium tuberculosis 7-keto-8-aminopelargonic acid synthase: Spectroscopic and kinetic studies. J Biol Chem 281:25076–25088

    Article  CAS  Google Scholar 

  • Cho BK, Seo JH, Kang TW, Kim BG (2003) Asymmetric synthesis of L-homophenylalanine by equilibrium-shift using recombinant aromatic L-amino acid transaminase. Biotechnol Bioeng 83:226–234

    Article  CAS  Google Scholar 

  • Fotheringham IG, Grinter N, Pantaleone DP, Senkpeil RF, Taylor PP (1999) Engineering of a novel biochemical pathway for the biosynthesis of L-2-aminobutyric acid in Escherichia coli K12. Bioorg Med Chem 7:2209–2213

    Article  CAS  Google Scholar 

  • Fotheringham I, Archer I, Carr R, Speight R, Turner NJ (2006) Preparative deracemization of unnatural amino acids. Biochem Soc Trans 34:287–290

    Article  CAS  Google Scholar 

  • Guillouet S, Rodal AA, An G, Lessard PA, Sinskey AJ (1999) Expression of the Escherichia coli catabolic threonine dehydratase in Corynebacterium glutamicum and its effect on isoleucine production. Appl Environ Microbiol 65:3100–3107

    Article  CAS  Google Scholar 

  • Han Q, Li J (2002) Comparative characterization of Aedes 3-hydroxykynurenine transaminase/alanine glyoxylate transaminase and Drosophila serine pyruvate aminotransferase. FEBS Lett 527:199–204

    Article  CAS  Google Scholar 

  • Hwang JY, Park J, Seo JH, Cha M, Cho BK, Kim J, Kim BG (2009) Simultaneous synthesis of 2-phenylethanol and L-homophenylalanine using aromatic transaminase with yeast Ehrlich pathway. Biotechnol Bioeng 102:1323–1329

    Article  CAS  Google Scholar 

  • Johnston RB, Schreiber EC, Davis MP, Jillson L, Sorrell WT, Kirker ME (1984) Catalytic properties of the active site of alanine racemase from B. subtilis. Prog Clin Biol Res 144A:339–350

    CAS  PubMed  Google Scholar 

  • Ju J, Yokoigawa K, Misono H, Ohnishi K (2005) Cloning of alanine racemase genes from Pseudomonas fluorescens strains and oligomerization states of gene products expressed in Escherichia coli. J Biosci Bioeng 100:409–417

    Article  CAS  Google Scholar 

  • Kim I-W, Khang Y-H (1995) Simple and rapid determination of the activity of recombinant D-amino acid oxidase in cephalosporin C bioconversion with use of a micro pO2 probe. Biotechnol Tech 9:863–868

    Article  CAS  Google Scholar 

  • Kim SS, Yu YG (2000) Molecular cloning of an extremely thermostable alanine racemase from Aquifex pyrophilus and enzymatic characterization of the expressed protein. J Biochem Mol Biol 33:82–88

    CAS  Google Scholar 

  • Krix G, Bommarius AS, Drauz K, Kottenhahn M, Schwarm M, Kula MR (1997) Enzymatic reduction of alpha-keto acids leading to L-amino acids, D- or L-hydroxy acids. J Biotechnol 53:29–39

    Article  CAS  Google Scholar 

  • Lo HH, Hsu SK, Lin WD, Chan NL, Hsu WH (2005) Asymmetrical synthesis of L-homophenylalanine using engineered Escherichia coli aspartate aminotransferase. Biotechnol Prog 21:411–415

    Article  Google Scholar 

  • Pennartz A, Genereux C, Parquet C, Mengin-Lecreulx D, Joris B (2009) Substrate-induced inactivation of the Escherichia coli AmiD N-acetylmuramoyl-L-alanine amidase highlights a new strategy to inhibit this class of enzyme. Antimicrob Agents Chemother 53:2991–2997

    Article  CAS  Google Scholar 

  • Pilone MS, Pollegioni L (2002) D-Amino acid oxidase as an industrial biocatalyst. Biocatal Biotransform 20:145–159

    Article  CAS  Google Scholar 

  • Pleiss JA, Wolfson AD, Uhlenbeck OC (2000) Mapping contacts between Escherichia coli alanyl tRNA synthetase and 2' hydroxyls using a complete tRNA molecule. Biochemistry 39:8250–8258

    Article  CAS  Google Scholar 

  • Pollegioni L, Caldinelli L, Molla G, Sacchi S, Pilone MS (2004) Catalytic properties of D-amino acid oxidase in cephalosporin C bioconversion: a comparison between proteins from different sources. Biotechnol Prog 20:467–473

    Article  CAS  Google Scholar 

  • Pollegioni L, Molla G, Sacchi S, Rosini E, Verga R, Pilone MS (2008) Properties and applications of microbial D-amino acid oxidases: current state and perspectives. Appl Microbiol Biotechnol 78:1–16

    Article  CAS  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  • Schroder I, Vadas A, Johnson E, Lim S, Monbouquette HG (2004) A novel archaeal alanine dehydrogenase homologous to ornithine cyclodeaminase and mu-crystallin. J Bacteriol 186:7680–7689

    Article  Google Scholar 

  • Shin JS, Kim BG (2009) Transaminase-catalyzed asymmetric synthesis of L-2-aminobutyric acid from a chiral reactants. Biotechnol Lett 31:1595–1599

    Article  CAS  Google Scholar 

  • Uo T, Yoshimura T, Tanaka N, Takegawa K, Esaki N (2001) Functional characterization of alanine racemase from Schizosaccharomyces pombe: a eucaryotic counterpart to bacterial alanine racemase. J Bacteriol 183:2226–2233

    Article  CAS  Google Scholar 

  • Zhang KC, Li H, Cho KM, Liao JC (2010) Expanding metabolism for total biosynthesis of the nonnatural amino acid L-homoalanine. Proc Natl Acad Sci USA 107:6234–6239

    Article  CAS  Google Scholar 

  • Zheng H, Wang X, Chen J, Zhu K, Zhao Y, Yang Y, Yang S, Jiang W (2006) Expression, purification, and immobilization of His-tagged D-amino acid oxidase of Trigonopsis variabilis in Pichia pastoris. Appl Microbiol Biotechnol 70:683–689

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Knowledge Innovation Program of the Chinese Academy of Sciences (No. KSCX2-EW-G-7, KSCX2-YW-G-075-14, KSCX2-EW-G-8), the Huzhou Municipal Science and Technology Project (2010ZD1006), the “365” Outstanding Scientific and Technological Innovation Team of Huzhou (2010KC01), and the Hi-Tech industrialized seed fund projects by Pudong New Area and Chinese Academy of Sciences (No. PKC2010-03). This work was also supported in part by National Basic Research Program of China (973: 2007CB707803, 2011CBA00806).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sheng Yang.

Additional information

Li Zhu and Rongsheng Tao contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhu, L., Tao, R., Wang, Y. et al. Removal of l-alanine from the production of l-2-aminobutyric acid by introduction of alanine racemase and d-amino acid oxidase. Appl Microbiol Biotechnol 90, 903–910 (2011). https://doi.org/10.1007/s00253-011-3127-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-011-3127-4

Keywords

Navigation