Skip to main content
Log in

Nature of Active Sites and Their Quantitative Measurement in Two-Dimensional Pt Metal Catalysts

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Quantitative measurement of the number of active surface sites on two-dimensional (2D) catalysts is one of the most crucial points in heterogeneous catalysis because it is used to determine the turnover frequency (TOF), which refers to the catalytic activity of model catalysts. However, because of the difficulty in identifying the effective active surface area on 2D heterogeneous catalysts, there is still the assumption that each metal atom is an active site. To shed light on these issues and to bridge the activity gaps between 2D and three-dimensional (3D) heterogeneous catalysts, we present an experimental approach that uses Pt nanoparticle (NP) arrays on a thin silicon wafer probed with CO pulse chemisorption, a widely used surface-sensitive technique, to determine the number of active sites and the area of the effective active surface. A Pt thin film and Pt NP arrays with two different NP sizes (i.e., 2.1 and 4.5 nm) were prepared as model systems for 2D catalysts. The effective active metal surface area determined using CO pulse chemisorption for these 2D catalysts is 53–79% of the apparent metal surface area that was obtained by measuring the surface area based on scanning electron microscopy images. This discrepancy between the active and apparent surface area is attributed to the presence of hydrocarbon contamination and organic capping layers on the catalysts. The results indicate that estimating the active sites of 2D catalysts by apparent surface area is reasonably in agreement with the number measured by chemisorption that is used to characterize 3D nanocatalysts. This experimental technique on 2D catalysts can be expected to provide information for extracting the true TOF of product molecules on 2D catalysts in gas-phase catalytic reactions.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Nørskov JK, Bligaard T, Hvolbaek B, Abild-Pedersen F, Chorkendorff I, Christensen CH (2008) Chem Soc Rev 37:2163–2171

    Article  Google Scholar 

  2. Thomas JM, Thomas WJ (1997) Principles and practice of heterogeneous catalysis. VCH, New York

    Google Scholar 

  3. Tatibouët JM (1997) Appl Catal A Gen 148:213–252

    Article  Google Scholar 

  4. Taylor HS (1925) Proc R Soc Lond Ser A 108:105–111

    Article  CAS  Google Scholar 

  5. Kim SM, Qadir K, Seo B, Jeong HY, Joo SH, Terasaki O, Park JY, Park Y (2013) Catal Lett 143:1153–1161

    Article  CAS  Google Scholar 

  6. Somorjai GA, McCrea KR, Zhu J (2002) Top Catal 18:3–4

    Article  Google Scholar 

  7. Somorjai GA, Park JY (2008) Angew Chem Int Ed 47:9212–9228

    Article  CAS  Google Scholar 

  8. Grunes J, Zhu J, Yang M, Somorjai GA (2003) Catal Lett 86:157–161

    Article  CAS  Google Scholar 

  9. Park JY, Zhang Y, Joo SH, Jung Y, Somorjai GA (2012) Catal Today 181:133–137

    Article  CAS  Google Scholar 

  10. Park JY, Zhang Y, Grass M, Zhang T, Somorjai GA (2008) Nano Lett 8:673–677

    Article  CAS  Google Scholar 

  11. Park JY, Somorjai GA (2006) ChemPhysChem 7:1409–1413

    Article  CAS  Google Scholar 

  12. Contreras AM, Grunes J, Yan X-M, Liddle A, Somorjai GA (2006) Top Catal 39:123–129

    Article  CAS  Google Scholar 

  13. Somorjai GA, Park JY (2008) Top Catal 49:126–135

    Article  CAS  Google Scholar 

  14. Burcham LJ, Briand LE, Wachs IE (2001) Langmuir 17:6164–6174

    Article  CAS  Google Scholar 

  15. Jung C-H, Yun J, Qadir K, Naik B, Yun J-Y, Park JY (2014) Appl Catal B Environ 154–155:171–176

    Article  Google Scholar 

  16. Ertl G (1991) Science 254:1750–1755

    Article  CAS  Google Scholar 

  17. Falsig H, Hvolbæk B, Kristensen IS, Jiang T, Bligaard T, Christensen CH, Nørskov JK (2008) Angew Chem Int Ed 120:4913–4917

    Article  Google Scholar 

  18. Chen MS, Cai Y, Yan Z, Gath KK, Axnanda S, Goodman DW (2007) Surf Sci 601:5326–5331

    Article  CAS  Google Scholar 

  19. Song H, Rioux RM, Hoefelmeyer JD, Komor R, Niesz K, Grass M, Yang P, Somorjai GA (2006) J Am Chem Soc 128:3027–3037

    Article  CAS  Google Scholar 

  20. Naik B, Moon SY, Oh S, Jung C-H, Park JY (2015) Catal Lett 145:930–938

    Article  CAS  Google Scholar 

  21. Park JY (2011) Langmuir 27:2509–2513

    Article  CAS  Google Scholar 

  22. Aliaga C, Park JY, Yamada Y, Lee HS, Tsung CK, Yang P, Somorjai GA (2009) J Phys Chem C 113:6150–6155

    Article  CAS  Google Scholar 

  23. Schwab GM, Koller K (1968) J Am Chem Soc 90:3078–3080

    Article  CAS  Google Scholar 

  24. Solymosi F. (1968) Catal Rev Sci Eng 1:233–255

    Article  Google Scholar 

  25. Kim SM, Lee SJ, Kim SH, Kwon S, Yee KJ, Song H, Somorjai GA, Park JY (2013) Nano Lett 13:1352–1358

    Article  CAS  Google Scholar 

  26. Broussard ME, Juma B, Train SG, Peng W-J, Laneman SA, Stanley GG (1993) Science 260:1784–1788

    Article  CAS  Google Scholar 

  27. Mondal A, Jana NR (2015) RSC Adv 5:85196–85201

    Article  CAS  Google Scholar 

  28. Kim SM, Park D, Yuk Y, Kim SH, Park JY (2013) Faraday Discuss 162:355–364

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by IBS-R004-G4.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeong Young Park.

Electronic supplementary material

Below is the link to the electronic supplementary material.

10562_2016_1909_MOESM1_ESM.pdf

Supplementary material 1. Further details on the experimental section and additional characterization. TEM images and the size distribution of the 2.1 and 4.5 nm Pt NPs (Figure S1); XPS spectra of the Pt thin film and the Pt NP arrays supported on silicon before CO chemisorption (Figure S2); Pt oxidation states for three different Pt catalysts from XPS plots (Table S1). (PDF 307 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oh, S., Qadir, K. & Park, J.Y. Nature of Active Sites and Their Quantitative Measurement in Two-Dimensional Pt Metal Catalysts. Catal Lett 147, 39–45 (2017). https://doi.org/10.1007/s10562-016-1909-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-016-1909-0

Keywords

Navigation