Skip to main content
Log in

Titania-Encapsulated Hybrid Nanocatalysts as Active and Thermally Stable Model Catalysts

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Metal–oxide hybrid nanocatalysts with ultrathin oxide encapsulation can be a new platform to test the metal–support interaction. Metal nanoparticles (Ru, Rh, or Pt) capped with polymer/citrate were deposited on functionalized SiO2 and then an ultrathin layer of TiO2 was selectively coated on the SiO2 surface to prevent sintering and to provide high thermal stability while maximizing the metal–oxide interface for higher catalytic activity. Transmission electron microscopy studies confirmed that 2.1–2.3 nm metal nanoparticles were well dispersed and distributed throughout the surface of the 25 nm SiO2 nanoparticles, and that a 2 nm ultrathin TiO2 layer existed on the surface of the particles. The metal nanoparticles were still well exposed to the outer surface, thus allowing for surface characterization and catalytic activity. Even after calcination at 600 °C, the structure and morphology of the hybrid nanocatalysts remained intact, confirming high thermal stability. The catalytic activities of the hybrid nanocatalysts with ultrathin oxide encapsulation (SiO2/M/TiO2, M = Pt, Rh, or Ru) were evaluated using the CO oxidation reaction. Hybrid nanocatalysts encapsulated by the ultrathin oxide layer allowed us to obtain high thermal stability and better exposure of the metal active sites for a strong metal–support interaction between the metals and the ultrathin TiO2.

Graphical Abstract

.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Somorjai GA, Frei H, Park JY (2009) J Am Chem Soc 131:16589

    Article  CAS  Google Scholar 

  2. Joo SH, Park JY, Tsung C-K, Yamada Y, Yang P, Somorjai GA (2008) Nat Mater 8:126

    Article  Google Scholar 

  3. Somorjai GA, Park JY (2008) Angew Chem Int Ed 47:9212

    Article  CAS  Google Scholar 

  4. Reddy AS, Kim S, Jeong HY, Jin S, Qadir K, Jung K, Jung CH, Yun JY, Cheon JY, Yang J-M, Joo SH, Terasaki O, Park JY (2011) Chem Commun 47:8412

    Article  Google Scholar 

  5. Park JY, Zhang Y, Grass M, Zhang T, Somorjai GA (2008) Nano Lett 8:673

    Article  CAS  Google Scholar 

  6. Sun Y-N, Giordano L, Goniakowski J, Lewandowsky M, Qin Z-H, Noguera C, Shaikhutdinov S, Pacchioni G, Freund H-J (2010) Angew Chem 122:4520

    Article  Google Scholar 

  7. Warren SC, Perkins, Adams AM, Kamperman M, Burns AA, Arora H, Herz E, Suteewong T, Sai H, Li Z (2012) Nat Mater 11:460

    Article  CAS  Google Scholar 

  8. Davis ME (2002) Nature 417:813

    Article  CAS  Google Scholar 

  9. Kresge C, Leonowicz M, Roth W, Vartuli J, Beck J (1992) Nature 359:710

    Article  CAS  Google Scholar 

  10. Somorjai GA, Park JY (2008) Top Catal 49:126

    Article  CAS  Google Scholar 

  11. Joo SH, Choi SJ, Oh I, Kwak J, Liu Z, Terasaki O, Ryoo R (2001) Nature 412:169

    Article  CAS  Google Scholar 

  12. Sun S, Zeng H (2002) J Am Chem Soc 124:8204

    Article  CAS  Google Scholar 

  13. Qadir K, Kim SM, Seo H, Mun BS, Aksoy F, Liu Z, Park JY (2013) J Phys Chem C 117:13108

    Article  CAS  Google Scholar 

  14. Kim SH, Jung C-H, Sahu N, Park D, Yun JY, Ha H, Park JY (2013) Appl Catal A 454:53

    Article  CAS  Google Scholar 

  15. Seo Y, Cho K, Jung Y, Ryoo R (2013) ACS Catal 3:713

    Article  CAS  Google Scholar 

  16. Deluga G, Salge J, Schmidt L, Verykios X (2004) Science 303:993

    Article  CAS  Google Scholar 

  17. Forde MM, Armstrong RD, Hammond C, He Q, Jenkins RL, Kondrat SA, Dimitratos N, Lopez-Sanchez JA, Taylor SH, Willock D (2013) J Am Chem Soc 135:11087

    Article  CAS  Google Scholar 

  18. Zhang Q, Lee I, Joo JB, Zaera F, Yin Y (2012) Acc Chem Res 46:1816

    Article  Google Scholar 

  19. Zhang Q, Lee I, Ge J, Zaera F, Yin Y (2010) Adv Funct Mater 20:2201

    Article  CAS  Google Scholar 

  20. Turkevich J, Stevenson PC, Hillier J (1951) Discuss Faraday Soc 11:55

    Article  Google Scholar 

  21. Joo SH, Park JY, Renzas JR, Butcher DR, Huang W, Somorjai GA (2010) Nano Lett 10:2709

    Article  CAS  Google Scholar 

  22. Grass ME, Zhang Y, Butcher DR, Park JY, Li Y, Bluhm H, Bratlie KM, Zhang T, Somorjai GA (2008) Angew Chem Int Ed 47:8893

    Article  CAS  Google Scholar 

  23. Lim SH, Phonthammachai N, Pramana SS, White T (2008) Langmuir 24:6226

    Article  CAS  Google Scholar 

  24. Ge J, Zhang Q, Zhang T, Yin Y (2008) Angew Chem Int Ed 47:8924

    Article  CAS  Google Scholar 

  25. Wen D, Guo S, Zhai J, Deng L, Ren W, Dong S (2009) J Phys Chem C 113:13023

    Article  CAS  Google Scholar 

  26. Freeman RG, Grabar KC, Allison KJ, Bright RM, Davis JA, Guthrie AP, Hommer MB, Jackson MA, Smith PC, Walter DG, Natan MJ (1995) Science 267:1629

    Article  CAS  Google Scholar 

  27. Westcott SL, Oldenburg SJ, Lee TR, Halas NJ (1998) Langmuir 14:5396

    Article  CAS  Google Scholar 

  28. Zhang H, Zong R, Zhao J, Zhu Y (2008) Environ Sci Technol 42:3803

    Article  CAS  Google Scholar 

  29. Hire CC, Genuino HC, Suib SL, Adamson DH (2013) Chem Mater 25:2056

    Article  CAS  Google Scholar 

  30. López T, Espinoza K, Kozina A, Galano A, Alexander-Katz R (2010) J Phys Chem C 114:20022

    Article  Google Scholar 

  31. Zhu Y, Li H, Zheng Q, Xu J, Li X (2012) Langmuir 28:7843

    Article  CAS  Google Scholar 

  32. An K, Alayoglu S, Musselwhite N, Plamthottam S, Melaet G, Lindemann AE, Somorjai GA (2013) J Am Chem Soc 135:16689

    Article  CAS  Google Scholar 

  33. Prashar AK, Mayadevi S, Rajamohan PR, Nalinidevi R (2011) Appl Catal A 403:91

    Article  CAS  Google Scholar 

  34. Boronat M, Corma A (2010) Langmuir 26:16607

    Article  CAS  Google Scholar 

  35. Kim YH, Yim S-D, Park ED (2012) Catal Today 185:143

    Article  CAS  Google Scholar 

  36. Grass ME, Joo SH, Zhang Y, Somorjai GA (2009) J Phys Chem C 113:8616

    Article  CAS  Google Scholar 

  37. Daniel W, Kim Y, Peebles H, White J (1981) Surf Sci 111:189

    Article  CAS  Google Scholar 

  38. Park JY, Renzas JR, Hsu BB, Somorjai GA (2007) J Phys Chem C 111:15331

    Article  CAS  Google Scholar 

  39. Hervier A, Renzas JR, Park JY, Somorjai GA (2009) Nano Lett 9:3930

    Article  CAS  Google Scholar 

  40. Park JY, Somorjai GA (2006) ChemPhysChem 7:1409

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by IBS-R004-G4.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeong Young Park.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naik, B., Moon, S.Y., Oh, S. et al. Titania-Encapsulated Hybrid Nanocatalysts as Active and Thermally Stable Model Catalysts. Catal Lett 145, 930–938 (2015). https://doi.org/10.1007/s10562-014-1465-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-014-1465-4

Keywords

Navigation