Skip to main content
Log in

A DFT Study of Ethanol Adsorption and Dehydrogenation on Cu/Cr2O3 Catalyst

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

In this work, DFT simulation method was used to study the adsorption and dehydrogenation of ethanol on Cu/Cr2O3 catalyst. Firstly, the stable configuration of Cu4 cluster adsorbed on Cr2O3(001) surface was studied. Secondly, the adsorption and dehydrogenation of ethanol on Cr2O3(001) surface and Cu/Cr2O3 were calculated. A part of the charge transfers to Cr2O3 from Cu4 cluster after Cu4 cluster is adsorbed on Cr2O3(001) surface. It is easier for Cu/Cr2O3 catalyst to supply electrons than pure copper catalyst. Adsorption energy of ethanol molecules on Cr2O3(001) surface is 0.94 eV, suggesting a chemisorptions process. The adsorption energy of ethanol on pure copper is only 0.34 eV. The interface of Cu4 cluster and Cr2O3 provides the appropriate ethanol adsorption sites. The adsorption energy of the most stable configuration of ethanol is 0.80 eV, and the adsorbed ethanol molecule bonds with Cu atom. There is a charge transfer process among ethanol, Cu cluster and Cr2O3, which can enhance the adsorption stability of ethanol molecules.

Graphical Abstract

In this work, DFT simulation method was used to study the adsorption and dehydrogenation of ethanol on Cu/Cr2O3 catalyst. Firstly, the stable configuration of Cu4 cluster adsorbed on Cr2O3(001) surface was studied. Secondly, the adsorption and dehydrogenation of ethanol on Cr2O3(001) surface and Cu/Cr2O3 were calculated. A part of the charge transfers to Cr2O3 from Cu4 cluster after Cu4 cluster is adsorbed on Cr2O3(001) surface. It is easier for Cu/Cr2O3 catalyst to supply electrons than pure copper catalyst. Adsorption energy of ethanol molecule on Cr2O3(001) surface is 0.94 eV, suggesting a chemisorptions process. The adsorption energy of ethanol on pure copper is only 0.34 eV. The interface of Cu4 cluster and Cr2O3 provides the appropriate ethanol adsorption sites. The adsorption energy of the most stable configuration of ethanol is 0.80 eV, and the adsorbed ethanol molecule bonds with Cu atom. There is a charge transfer process among ethanol, Cu cluster and Cr2O3, which can enhance the adsorption stability of ethanol molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Prasad R (2005) Mater Lett 59:3945–3949

    Article  CAS  Google Scholar 

  2. Agrell J, Boutonnet M, Melián-Cabrera I, Fierro JLG (2003) Appl Catal A 253:201–211

    Article  CAS  Google Scholar 

  3. Colley SW, Tabatabaei J, Waugh KC, Wood MA (2005) J Catal A 236:21–33

    Article  CAS  Google Scholar 

  4. Sanchez AB, Homs N, Fierro JLG, Piscina de la PR (2005) Catal Today 107:431–435

    Article  Google Scholar 

  5. Zhang MH, Yu YZ (2013) Ind Eng Chem Res 52:9505–9514

    Article  CAS  Google Scholar 

  6. Inui K, Kurabayashi T, Sato S (2002) Appl Catal A 237:53–61

    Article  CAS  Google Scholar 

  7. Li XF, Jiang HX, Li GM, Zhang MH (2012) Ind Eng Chem Res 518:974–8978

    Google Scholar 

  8. Inui K, Kurabayashi T, Sato S (2002) J Catal 212:207–215

    Article  CAS  Google Scholar 

  9. Zhang MH, Li GM, Jiang HX, Zhang JY (2011) Catal Lett 141:1104–1110

    Article  CAS  Google Scholar 

  10. Zhang MH, Li RZ, Yu YZ (2012) Chin J Chem 30:771–778

    Article  CAS  Google Scholar 

  11. Delley B (1990) J. Chem. Phys. 92:508–517

    Article  CAS  Google Scholar 

  12. Monkhorst HJ, Pack JD (1976) Phys. Rev. B 13:5188

    Article  Google Scholar 

  13. Sato Y, Akimoto S (1979) J Appl Phys 50:5285–5291

    Article  CAS  Google Scholar 

  14. Sun K, Zhang MH, Wang LC (2013) Chem Phys Lett 585:89–94

    Article  CAS  Google Scholar 

  15. Pantaleo G, Liotta LF, Venezia AM et al (2009) Mater Chem Phys 114:604–611

    Article  CAS  Google Scholar 

  16. Philip GH, Nicholas CL, Wayne D et al (2000) Chem Mater 12:3113–3122

    Article  Google Scholar 

  17. El-Shobaky GA, El-Khouly SM, Ghozza AM et al (2006) Appl Catal A 302:296–304

    Article  CAS  Google Scholar 

  18. Liang CH, Ma ZQ, Ding L et al (2009) Catal Lett 130:169–176

    Article  CAS  Google Scholar 

  19. Soon A, Todorova M, Delley B, Stampfl C (2006) Phys Rev B 73:1–12

    Article  Google Scholar 

  20. Gomes JRB, Gomes JANF (2001) Surf Sci 471:59–70

    Article  CAS  Google Scholar 

  21. Li RZ, Zhang MH, Yu YZ (2012) Appl Surf Sci 258:6777–6784

    Article  CAS  Google Scholar 

  22. Hammer B, Norskov JK (2000) Adv Catal 45:71–129

    CAS  Google Scholar 

  23. Maurice V, Cadot S, Marcus P (2000) Surf Sci 458:195–215

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guiming Li or Yingzhe Yu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, M., Huang, Y., Li, R. et al. A DFT Study of Ethanol Adsorption and Dehydrogenation on Cu/Cr2O3 Catalyst. Catal Lett 144, 1978–1986 (2014). https://doi.org/10.1007/s10562-014-1356-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-014-1356-8

Keywords

Navigation