Skip to main content
Log in

First-principles investigation of methanol synthesis from CO2 hydrogenation on Cu@Pd core–shell surface

  • Computation & theory
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In this paper, the density functional theory calculation is used to investigate the reaction mechanisms of CO2 hydrogenation to CH3OH on the Cu@Pd core–shell surface. In particular, the possible adsorption sites, structural parameters, and adsorption energies of all intermediates are determined. All the reaction energies and the activation barriers of elementary steps involved in the possible hydrogenation mechanisms, including the HCOO pathway, the COOH pathway, and the RWGS + CO-Hydro pathway, are studied in detail. The calculated activation barrier of the rate-determining step is 1.84 eV for the HCOO pathway, 1.45 eV for the COOH pathway, and 1.17 eV for the RWGS + CO-Hydro pathway. Therefore, the most favorable hydrogenation mechanism on the Cu@Pd core–shell surface is following the reverse water–gas shift reaction followed by CO hydrogenation and will be completed via the route of CO2* → trans-COOH* → cis-COOH* → CO* → HCO* → HCOH* → H2COH* → CH3OH*. Compared with Cu-based catalysts such as Cu(111), Cu29 cluster, Cu19 cluster, and Cu(211), the Cu@Pd core–shell catalyst is demonstrated to have higher catalytic activity toward CO2 hydrogenation to CH3OH.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Podjaski F, Kröger J, Lotsch BV (2018) Toward an aqueous solar battery: direct electrochemical storage of solar energy in carbon nitrides. Adv Mater 30:1705477

    Google Scholar 

  2. Zheng X, Cao X, Sun Z et al (2020) Indiscrete metal/metal-N-C synergic active sites for efficient and durable oxygen electrocatalysis toward advanced Zn-air batteries. Appl Catal B Environ 272:118967

    CAS  Google Scholar 

  3. Chen X, Chang J, Ke Q (2018) Probing the activity of pure and N-doped fullerenes towards oxygen reduction reaction by density functional theory. Carbon 126:53–57

    CAS  Google Scholar 

  4. Chen X, Sun F, Bai F, Xie Z (2019) DFT study of the two dimensional metal–organic frameworks X3(HITP)2 as the cathode electrocatalysts for fuel cell. Appl Surf Sci 471:256–262

    CAS  Google Scholar 

  5. Zhang L, Shan B, Zhao Y, Guo Z (2019) Review of micro seepage mechanisms in shale gas reservoirs. Int J Heat Mass Transfer 139:144–179

    Google Scholar 

  6. Zhang L, Chen Z, Zhao Y (2019) Well production performance analysis for shale gas reservoirs. Elsevier, Cambridge

    Google Scholar 

  7. Wang W-H, Himeda Y, Muckerman JT, Manbeck GF, Fujita E (2015) CO2 hydrogenation to formate and methanol as an alternative to photo- and electrochemical CO2 reduction. Chem Rev 115:12936–12973

    CAS  Google Scholar 

  8. Appel AM, Bercaw JE, Bocarsly AB et al (2013) Frontiers, opportunities, and challenges in biochemical and chemical catalysis of CO2 fixation. Chem Rev 113:6621–6658

    CAS  Google Scholar 

  9. Aresta M, Dibenedetto A (2007) Utilisation of CO2 as a chemical feedstock: opportunities and challenges. Dalton Trans 28:2975–2992

    Google Scholar 

  10. Aresta M, Dibenedetto A, Angelini A (2013) Catalysis for the valorization of exhaust carbon: from CO2 to chemicals, materials, and fuels. Technological use of CO2. Chem Rev 114:1709–1742

    Google Scholar 

  11. Ansari MB, Park S-E (2012) Carbon dioxide utilization as a soft oxidant and promoter in catalysis. Energy Environ Sci 5:9419–9437

    CAS  Google Scholar 

  12. Wang W, Wang S, Ma X, Gong J (2011) Recent advances in catalytic hydrogenation of carbon dioxide. Chem Soc Rev 40:3703–3727

    CAS  Google Scholar 

  13. Song C (2006) Global challenges and strategies for control, conversion and utilization of CO2 for sustainable development involving energy, catalysis, adsorption and chemical processing. Catal Today 115:2–32

    CAS  Google Scholar 

  14. Xu X, Moulijn JA (1996) Mitigation of CO2 by chemical conversion: plausible chemical reactions and promising products. Energy Fuels 10:305–325

    Google Scholar 

  15. Mikkelsen M, Jørgensen M, Krebs FC (2010) The teraton challenge. a review of fixation and transformation of carbon dioxide. Energy Environ Sci 3:43–81

    CAS  Google Scholar 

  16. Liu X-M, Lu GQ, Yan Z-F, Beltramini J (2003) Recent advances in catalysts for methanol synthesis via hydrogenation of CO and CO2. Ind Eng Chem Res 42:6518–6530

    CAS  Google Scholar 

  17. Arena F, Italiano G, Barbera K, Bordiga S, Bonura G, Spadaro L, Frusteri F (2008) Solid-state interactions, adsorption sites and functionality of Cu-ZnO/ZrO2 catalysts in the CO2 hydrogenation to CH3OH. Appl Catal A: Gen 350:16–23

    CAS  Google Scholar 

  18. Saito M, Fujitani T, Takeuchi M, Watanabe T (1996) Development of copper/zinc oxide-based multicomponent catalysts for methanol synthesis from carbon dioxide and hydrogen. Appl Catal A: Gen 138:311–318

  19. Behrens M, Studt F, Kasatkin I et al (2012) The active site of methanol synthesis over Cu/ZnO/Al2O3 industrial catalysts. Science 336:893–897

    CAS  Google Scholar 

  20. Graciani J, Mudiyanselage K, Xu F et al (2014) Highly active copper-ceria and copper-ceria-titania catalysts for methanol synthesis from CO2. Science 345:546–550

    CAS  Google Scholar 

  21. Tisseraud C, Comminges C, Pronier S, Pouilloux Y, Le Valant A (2016) The Cu−ZnO synergy in methanol synthesis part 3: impact of the composition of a selective Cu@ZnOx core−shell catalyst on methanol rate explained by experimental studies and a concentric spheres model. J Catal 343:106–114

  22. Li MM-J, Zeng Z, Liao F, Hong X, Tsang SCE (2016) Enhanced CO2 hydrogenation to methanol over CuZn nanoalloy in Ga modified Cu/ZnO catalysts. J Catal 343:157–167

    CAS  Google Scholar 

  23. Gaikwad R, Bansode A, Urakawa A (2016) High-pressure advantages in stoichiometric hydrogenation of carbon dioxide to methanol. J Catal 343:127–132

    CAS  Google Scholar 

  24. Arena F, Mezzatesta G, Zafarana G, Trunfio G, Frusteri F, Spadaro L (2013) Effects of oxide carriers on surface functionality and process performance of the Cu−ZnO system in the synthesis of methanol via CO2 hydrogenation. J Catal 300:141–151

    CAS  Google Scholar 

  25. Lin S, Ma J, Ye X, Xie D, Guo H (2013) CO hydrogenation on Pd(111): competition between Fischer–Tropsch and oxygenate synthesis pathways. J Phys Chem C 117:14667–14676

    CAS  Google Scholar 

  26. Ye J, Liu C-J, Mei D, Ge Q (2014) Methanol synthesis from CO2 hydrogenation over a Pd4/In2O3 model catalyst: a combined DFT and kinetic study. J Catal 317:44–53

    CAS  Google Scholar 

  27. Toyir J, de la Piscina PR, Fierro JLG, Homs N (2001) Catalytic performance for CO2 conversion to methanol of gallium-promoted copper-based catalysts: influence of metallic precursors. Appl Catal B: Environ 34:255–266

    CAS  Google Scholar 

  28. Nerlov J, Sckerl S, Wambach J, Chorkendorff I (2000) Methanol synthesis from CO2, CO and H2 over Cu(100) and Cu(100) modified by Ni and Co. Appl Catal A: Gen 191:97–109

    CAS  Google Scholar 

  29. Jiang X, Koizumi N, Guo X, Song C (2015) Bimetallic Pd−Cu catalysts for selective CO2 hydrogenation to methanol. Appl Catal B: Environ 170:173–185

    Google Scholar 

  30. Wang F, Ding X, Niu X, Liu X, Wang W, Zhang J (2020) Green preparation of core–shell Cu@Pd nanoparticles with chitosan for glucose detection. Carbohydr Polym 247:116647

  31. Gajjala RKR, Palathedath SK (2018) Cu@Pd core-shell nanostructures for highly sensitive and selective amperometric analysis of histamine. Biosens Bioelectron 102:242–246

    CAS  Google Scholar 

  32. Chen Y, Yang Y, Fu G, Xu L, Sun D, Lee J-M, Tang Y (2018) Core–shell CuPd@Pd tetrahedra with concave structures and Pd-enriched surface boost formic acid oxidation. J Mater Chem A 6:10632–10638

  33. Li S, Cheng D, Qiu X, Cao D (2014) Synthesis of Cu@Pd core-shell nanowires with enhanced activity and stability for formic acid oxidation. Electrochim Acta 143:44–48

    CAS  Google Scholar 

  34. Delley B (2000) From molecules to solids with the DMol3 approach. J Chem Phys 113:7756–7764

    CAS  Google Scholar 

  35. Delley B (1990) An all-electron numerical method for solving the local density functional for polyatomic molecules. J Chem Phys 92:508–517

    CAS  Google Scholar 

  36. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868

    CAS  Google Scholar 

  37. Perdew JP, Wang Y (1992) Accurate and simple analytic representation of the electron-gas correlation energy. Phys Rev B 45:13244–13249

    CAS  Google Scholar 

  38. Bergner A, Dolg M, Küchle W, Stoll H, Preuß H (1993) Ab initio energy-adjusted pseudopotentials for elements of groups 13–17. Mol Phys 80:1431–1441

    CAS  Google Scholar 

  39. Halgren TA, Lipscomb WN (1977) The synchronous-transit method for determining reaction pathways and locating molecular transition states. Chem Phys Lett 49:225–232

    CAS  Google Scholar 

  40. Govind N, Petersen M, Fitzgerald G, King-Smith D, Andzelm JA (2003) Generalized synchronous transit method for transition state location. Comp Mater Sci 28:250–258

    CAS  Google Scholar 

  41. Pan Y, Liu C-J, Ge Q (2008) Adsorption and protonation of CO2 on partially hydroxylated γ-Al2O3 surfaces: a density functional theory study. Langmuir 24:12410–12419

    CAS  Google Scholar 

  42. Liu L, Yao H, Jiang Z, Fang T (2018) Theoretical study of methanol synthesis from CO2 hydrogenation on PdCu3(111) surface. Appl Surf Sci 451:333–345

    CAS  Google Scholar 

  43. Zhao Y-F, Yang Y, Mims C, Peden CHF, Li J, Mei D (2011) Insight into methanol synthesis from CO2 hydrogenation on Cu(111): complex reaction network and the effects of H2O. J Catal 281:199–221

    CAS  Google Scholar 

  44. Peng G, Sibener SJ, Schatz GC, Ceyer ST, Mavrikakis M (2012) CO2 hydrogenation to formic acid on Ni(111). J Phys Chem C 116:3001–3006

    CAS  Google Scholar 

  45. Zhang R, Wang B, Liu H, Ling L (2011) Effect of surface hydroxyls on CO2 hydrogenation over Cu/γ-Al2O3 catalyst: a theoretical study. J Phys Chem C 115:19811–19818

    CAS  Google Scholar 

  46. Rasmussen PB, Holmblad PM, Askgaard T, Ovesen CV, Stoltze P, Nørskov JK, Chorkendorff I (1994) Methanol synthesis on Cu(100) from a binary gas mixture of CO2 and H2. Catal Lett 26:373–381

    CAS  Google Scholar 

  47. Kattel S, Ramírez PJ, Chen JG, Rodriguez JA, Liu P (2017) Active sites for CO2 hydrogenation to methanol on Cu/ZnO catalysts. Science 355:1296–1299

    CAS  Google Scholar 

  48. Kattel S, Yan B, Yang Y, Chen JG, Liu P (2016) Optimizing binding energies of key intermediates for CO2 Hydrogenation to methanol over oxide-supported copper. J Am Chem Soc 138:12440–12450

    CAS  Google Scholar 

  49. Grabow LC, Mavrikakis M (2011) Mechanism of methanol synthesis on Cu through CO2 and CO hydrogenation. ACS Catal 1:365–384

    CAS  Google Scholar 

  50. Christmann K, Demuth JE (1982) The adsorption and reaction of methanol on Pd(100). I. Chem Conden J Chem Phys 76:6308–6317

    CAS  Google Scholar 

  51. Yang Y, Evans J, Rodriguez JA, White MG, Liu P (2010) Fundamental studies of methanol synthesis from CO2 hydrogenation on Cu(111), Cu clusters, and Cu/ZnO(0001). Phys Chem Chem Phys 12:9909–9917

    CAS  Google Scholar 

  52. Zhang X, Liu J-X, Zijlstra B, Filot IAW, Zhou Z, Sun S, Hensen EJM (2018) Optimum Cu nanoparticle catalysts for CO2 hydrogenation towards methanol. Nano Energy 43:200–209

    Google Scholar 

Download references

Acknowledgement

This work is supported by the Applied Basic Research Project of Science and Technology Department of Sichuan Province (No. 2020YJ0418) and the Youth Science and Technology Innovation Team of Southwest Petroleum University (No. 2018CXTD05). We acknowledge the National Supercomputing Center in Shenzhen for providing the computational resources and Materials Studio software.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qiang Ke or Xin Chen.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Handling Editor: Yaroslava Yingling.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, J., Ke, Q. & Chen, X. First-principles investigation of methanol synthesis from CO2 hydrogenation on Cu@Pd core–shell surface. J Mater Sci 56, 3790–3803 (2021). https://doi.org/10.1007/s10853-020-05335-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-020-05335-6

Navigation