Skip to main content

Advertisement

Log in

DFT comparison of the performance of bare Cu and Cu-alloyed Co single-atom catalyst for CO2 synthesizing of methanol

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

Copper-based catalysts have been widely used for CO2 synthesizing of methanol, while enhancing the productivity of methanol is a big challenge. Here, we chose Co as the partner of Cu, designed an alloyed Co single-atom catalyst (SAC), and calculated its catalytic performance for the hydrogenation of CO2 to CH3OH using density functional theory. Potential energy surface analysis confirmed that the favorable hydrogenation catalyst for CO2 is the SAC of Cu12Co and proceeds via CO2 → HCOO → H2COO → H2CO → H3CO → CH3OH. It has long been proposed that gas-phase atomic clusters that can be well characterized by computational method are the ultimate single-site catalysts. Brønsted–Evans–Polanyi (BEP) relations perform adequately for exploring biomass-relevant chemical kinetics on metal surface with higher accuracy than the universal BEP relations. After BEP relation analysis, the C–H formation and C–O bond scission have shown good correlation within the range considered, and for O–H, the state of initial representation seems more than adequate. We hope that our work may be useful for designing and optimizing Cu-based catalysts for CO2 synthesizing of methanol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Schaefer M, Behrendt F, Hammer T (2010) Chem Eng China 4:172–183

    Article  CAS  Google Scholar 

  2. Darensbourg D (2010) Inorg Chem 49:10765–10780

    Article  CAS  Google Scholar 

  3. Karp EM, Silbaugh TL, Crowe MC, Campbell CT (2012) J Am Chem Soc 134:20388–20395

    Article  CAS  Google Scholar 

  4. Lin S, Johnson RS, Smith GK, Xie D, Guo H (2011) Phys Chem Chem Phys 13:9622–9631

    Article  CAS  Google Scholar 

  5. Graciani J, Mudiyanselage K, Xu F (2014) Science 345:546–550

    Article  CAS  Google Scholar 

  6. Rasul S, Anjum DH, Jedidi A, Minenkov Y, Cavallo L, Takanabe K (2015) Angew Chem Int Ed 54:2146–2153

    Article  CAS  Google Scholar 

  7. Porosoff MD, Yan B, Chen JG (2016) Energy Environ Sci 9:62–73

    Article  CAS  Google Scholar 

  8. Waugh KC (1992) Catal Lett 15:51–75

    Article  CAS  Google Scholar 

  9. Behrens M, Studt F, Kasatkin I et al (2012) Science 336:893–897

    Article  CAS  Google Scholar 

  10. Kuld S, Conradsen C, Moses PG et al (2014) Angew Chem 53:5941–5945

    Article  CAS  Google Scholar 

  11. Jadhav SG, Vaidya PD, Bhanage BM et al (2014) Chem Eng Res Des 92:2557–2567

    Article  CAS  Google Scholar 

  12. Lunkenbein T, Schumann J, Behrens M et al (2015) Angew Chem 54:4544–4548

    Article  CAS  Google Scholar 

  13. Kauffman DR, Alfonso D, Matranga C et al (2012) J Am Chem Soc 134:10237–10243

    Article  CAS  Google Scholar 

  14. Reske R, Mistry H, Behafarid F et al (2014) J Am Chem Soc 136:6978–6986

    Article  CAS  Google Scholar 

  15. Duan X, Warschkow O, Soon A, Delley B, Stampfl C (2010) Matter Mater Phys 81:4764–4770

    Google Scholar 

  16. Liem SY, Clarke JHR, Kresse G (2000) Comput Mater Sci 17:133–140

    Article  CAS  Google Scholar 

  17. Mehmood F, Greeley J, Zapol P, Curtiss L (2010) J Phys Chem 114:14458–14466

    Article  CAS  Google Scholar 

  18. Sakong S, Groß A (2005) J Catal 231:420–429

    Article  CAS  Google Scholar 

  19. Zuo ZJ, Wang L, Han PD, Huang W (2014) Comput Theor Chem 1033:14–22

    Article  CAS  Google Scholar 

  20. Natesakhawat S, Lekse JW, Baltrus JP, Ohodnicki PR, Howard BH, Deng XY, Matranga C (2012) ACS Catal 2:1667–1676

    Article  CAS  Google Scholar 

  21. Liu C, Yang B, Tyo E, Seifert S, DeBartolo J, von Issendorff B, Zapol P, Vajda S, Curtiss LA (2015) J Am Chem Soc 137:8676–8679

    Article  CAS  Google Scholar 

  22. Lei Y, Mehmood F, Lee S, Greeley JP, Lee B, Seifert S, Winans RE, Elam JW, Meyer RJ, Redfern PC et al (2010) Science 328:224–228

    Article  CAS  Google Scholar 

  23. Tyo EC, Vajda S (2015) Nat Nanotechnol 10:577–588

    Article  CAS  Google Scholar 

  24. Kabir M, Mookerjee A, Bhattacharya AK (2004) Eur Phys J D 31:477–485

    Article  CAS  Google Scholar 

  25. Flytzanistephanopoulos M (2014) Acc Chem Res 47:783–792

    Article  CAS  Google Scholar 

  26. Liang S, Hao C, Shi Y (2015) Chem Cat Chem 7:2559–2567

    CAS  Google Scholar 

  27. Qiu HJ, Ito Y, Cong W et al (2015) Angew Chem 54:14031–14035

    Article  CAS  Google Scholar 

  28. Yang S, Kim J, Tak YJ et al (2016) Angew Chem 55:2058–2062

    Article  CAS  Google Scholar 

  29. Li Y, Wang Z, Tong X et al (2016) ACS Appl Math Mater Interfaces 28:6959–6965

    CAS  Google Scholar 

  30. Lucci FR, Liu J, Marcinkowski MD et al (2015) Nat Commun 6:8550–8558

    Article  Google Scholar 

  31. Catlow CRA, French SA, Sokol AA et al (2005) Philos Trans R Soc Lond A 363:913–936

    Article  CAS  Google Scholar 

  32. Morikawa Y, Iwata K, Terakura K (2001) Appl Surf Sci 169:11–15

    Article  Google Scholar 

  33. Yang Y, Evans J, Rodriguez JA et al (2010) Phys Chem Chem Phys PCCP 12:9909–9917

    Article  CAS  Google Scholar 

  34. Yang Y, White MG, Ping LA (2011) J Phys Chem A 116:248–256

    Google Scholar 

  35. Studt F, Abild-Pedersen F, Varley JB et al (2013) Catal Lett 143:71–73

    Article  CAS  Google Scholar 

  36. Samson K, Śliwa M, Socha RP et al (2014) ACS Catal 4:3730–3741

    Article  CAS  Google Scholar 

  37. Kim Y, Trung TSB, Yang S et al (2016) ACS Catal 6:1037–1044

    Article  CAS  Google Scholar 

  38. Martínezsuárez L, Siemer N, Frenzel J et al (2015) ACS Catal 5:4201–4218

    Article  Google Scholar 

  39. Perdew JP, Burke K, Ernzerhof M (1996) Phys Rev Lett 77:3865–3868

    Article  CAS  Google Scholar 

  40. Hay PJ, Wadt WR (1985) J Chem Phys 82:299–310

    Article  CAS  Google Scholar 

  41. Halgren TA, Lipscomb WN (1997) Chem Phys Lett 49:225–232

    Article  Google Scholar 

  42. Nakano H, Nakamura I, Fujitani T, Nakamura J (2001) J Phys Chem B 105:1355–1365

    Article  CAS  Google Scholar 

  43. Gokhale AA, Dumesic JA, Mavrikakis MJ (2008) Am Chem Soc 130:1402–1414

    Article  CAS  Google Scholar 

  44. Kozuch S, Shaik S (2010) Acc Chem Res 44:101–110

    Article  Google Scholar 

  45. Deng Z, Lu X, Wen Z, Wei S, Zhu Q, Jin D, Shi X, Guo W (2014) RSC Adv 4:12266–12274

    Article  CAS  Google Scholar 

  46. Nørskov JK, Bligaard T, Logadottir A, Bahn S, Hansen LB, Bollinger M, Bengaard H, Hammer B, Sljivancanin Z, Mavrikakis M, Xu Y, Dahl S, Jacobsen C (2002) J Catal 209:275–278

    Article  Google Scholar 

  47. Hammer B (1999) Phys Rev Lett 83:3681–3684

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the “1331” project of Shanxi Province, High School 131 Leading Talent Project of Shanxi, Undergraduate Training Programs for Innovation and Entrepreneurship of Shanxi Province (Grant Nos. 105088, 2015537, WL2015CXCY-SJ-01) and Shanxi Normal University (WL2015CXCY-YJ-18) and Teaching Reform Project of Shanxi Normal University (WL2015JGXM-YJ-13) and funded by Graduate student innovation project of Shanxi Normal University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ling Guo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xing, M., Guo, S. & Guo, L. DFT comparison of the performance of bare Cu and Cu-alloyed Co single-atom catalyst for CO2 synthesizing of methanol. Theor Chem Acc 137, 18 (2018). https://doi.org/10.1007/s00214-018-2196-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-018-2196-1

Keywords

Navigation