Skip to main content
Log in

Effects of Zr and K Promoters on Precipitated Iron-Based Catalysts for Fischer–Tropsch Synthesis

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

The effects of Zr and K promoters on the structure, adsorption, reduction, carburization and catalytic behavior of precipitated iron-based Fischer–Tropsch synthesis (FTS) catalysts were investigated. The catalysts were characterized by N2 physisorption, temperature-programmed reduction/desorption (TPR/TPD) and Mössbauer effect spectroscopy (MES) techniques. As revealed by N2 physisorption, Zr and/or K promoted catalysts showed lower surface area than Fe/SiO2 catalyst. Zr promoter inhibited the reduction and carburization because of the interaction between Fe and Zr in Fe–Zr/SiO2 catalysts. K promoter enhanced the reduction in CO and apparently facilitated the CO adsorption, thus promoted the carburization, but it retarded the reduction in H2 and severely suppressed the H2 adsorption. Compared with the singly promoted catalysts, the doubly promoted catalyst had the highest FTS activity. In addition, both Zr and K promoters suppressed the formation of methane and shifted the production distribution to heavy hydrocarbons.

Graphical Abstract

Both Zr and K restrained the formation of methane, and increased the heavy hydrocarbons selectivity. In the FTS reaction, the doubly promoted catalyst Fe–Zr–K/SiO2 had the highest FTS activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Steynberg AP (2004) In: Steynberg AP, Dry ME (eds) Studies in surface science and catalysis, vol. 152, chap. 1, Elsevier, Amsterdam

  2. Dry ME (2002) Catal Today 71:227–241

    Article  CAS  Google Scholar 

  3. Jothmurugesan K, Goodwin JG Jr, Gangwal SK, Spivey JJ (2000) Catal Today 58:335–344

    Article  Google Scholar 

  4. Bukur DB, Lang X, Mukesh D, Zimmerman WH, Rosynek MP, Li C (1990) Ind Eng Chem Res 29:1588

    Article  CAS  Google Scholar 

  5. Dry ME (1981) The Fischer–Tropsch synthesis. Springer-Verlag, New York

    Google Scholar 

  6. Yang Y, Xiang HW, Xu YY, Bai L, Li YW (2004) Appl Catal A: Gen 266:181–194

    Article  CAS  Google Scholar 

  7. Bukur DB, Mukesh D, Patel SA (1990) Ind Eng Chem Res 29:194–204

    Article  CAS  Google Scholar 

  8. Miller DG, Moskovits M (1988) J Phys Chem 92:6081–6085

    Article  CAS  Google Scholar 

  9. Dry ME, Shingles T, Boshoff LJ, Oosthuizen GJ (1969) J Catal 15:190–199

    Article  CAS  Google Scholar 

  10. Ma WP, Kugler EL, Dadyburjor DB (2007) Energy Fuels 21:1832–1842

    Article  CAS  Google Scholar 

  11. Lohitharn N, Goodwin JG Jr (2008) J Catal 260:7–16

    Article  CAS  Google Scholar 

  12. Pichler H (1952) In: Frankenberg WG, Komarewsky VI, Rideal EK (eds) Advances in catalysis, vol 4. Academic Press, New York, p 271

    Google Scholar 

  13. Dictor RA, Bell AT (1986) J Catal 97:121

    Article  CAS  Google Scholar 

  14. Ma WP, Ding YJ, Lin LW (2004) Ind Eng Chem Res 43:2391–2398

    Article  CAS  Google Scholar 

  15. Feller A, Claeys M, van Steen E (1999) J Catal 185:120–130

    Article  CAS  Google Scholar 

  16. Oukaci R, Sigleton AH, Goodwin JG Jr (1999) Appl Catal A: Gen 186:129–144

    Article  CAS  Google Scholar 

  17. Ali S, Chen B, Goodwin JG Jr (1995) J Catal 157:35–41

    Article  CAS  Google Scholar 

  18. Rohr F, Lindvåg OA, Holmen A, Blekkan EA (2000) Catal Today 58:247–254

    Article  CAS  Google Scholar 

  19. O’Brien RJ, Xu L, Milburn DR, Li Y, Klabunde KJ, Davis BH (1995) Top Catal 2:1–15

    Article  Google Scholar 

  20. Lohitharn N, Goodwin JG Jr, Lotero E (2008) J Catla 255:104–113

    Article  CAS  Google Scholar 

  21. Belosludov RV, Sakahara S, Yajima K, Takami S, Kubo M, Miyamoto A (2002) Appl surf sci 189:245–252

    Article  CAS  Google Scholar 

  22. Dlamini H, Motjope T, Joorst G, Stege GT, Mdleleni M (2002) Catal Lett 78:201–207

    Article  CAS  Google Scholar 

  23. Yang Y, Xiang HW, Tian L, Wang H, Zhang CH, Tao ZC, Xu YY, Zhong B, Li YW (2005) Appl Catal A: Gen 284:105–122

    Article  CAS  Google Scholar 

  24. Jin Y, Datye AK (2000) J Catal 196:8

    Article  CAS  Google Scholar 

  25. Li S, Li A, Krishnamoorthy S, Iglesia E (2001) Catal Lett 77:197

    Article  CAS  Google Scholar 

  26. Bukur DB, Sivaraj C (2002) Appl Catal A: Gen 231:201

    Article  CAS  Google Scholar 

  27. Chen KD, Fan YN, Hu Z, Yan QJ (1996) Catal Lett 36:141

    Article  Google Scholar 

  28. Zhao GY, Zhang CH, Qing SD, Xiang HW, Li YW (2008) J Mol Catal A:Chem 286:137–142

    Article  CAS  Google Scholar 

  29. Zhang CH, Zhao GY, Liu KK, Yang Y, Xiang HW, Li YW (2010) J Mol Catal A:Chem 328:35–43

    Article  CAS  Google Scholar 

  30. Brown JK, Luntz AC, Schultz PA (1991) J Chem Phys 95:3767–3774

    Article  CAS  Google Scholar 

  31. Wan HJ, Wu BS, Zhang CH, Xiang HW, Li YW (2008) J Mol Catal A: Chem 283:33–42

    Article  CAS  Google Scholar 

  32. Cameron SD, Dwyer DJ (1988) Surf Sci 198:315–330

    Article  CAS  Google Scholar 

  33. Sirmanothan N, Hamdeh HH, Zhang Y, Davis BH (2002) Catal Lett 82:181

    Article  Google Scholar 

  34. Cui XJ, Xu J, Zhang CH, Yang Y, Gao P, Wu BS, Li YW (2011) J Catal 282:35–46

    Article  CAS  Google Scholar 

  35. Zhang CH, Yang Y, Teng BT, Li TZ, Zheng HY, Xiang HW, Li YW (2006) J Catal 237:405–415

    Article  CAS  Google Scholar 

  36. Riedel T, Schulz H, Schaub G, Jun KW, Hwang JS, Lee KW (2003) Top Catal 26:41

    Article  CAS  Google Scholar 

  37. Motiope TR, Dlamini HT, Hearne GR, Conville NJ (2002) Catal Today 71:335–341

    Article  Google Scholar 

  38. Mansker LD, Jin Y, Bukur DB, Datye AK (1999) Appl Catal A: Gen 186:277

    Article  CAS  Google Scholar 

  39. Qing M, Yang Y, Wu BS, Xu J, Zhang CH, Gao P, Li YW (2011) J Catal 279:111–122

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the financial support from State Key Laboratory of Chemical Engineering (SKL-ChE-09T01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weiyong Ying.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, H., Ma, H., Zhang, H. et al. Effects of Zr and K Promoters on Precipitated Iron-Based Catalysts for Fischer–Tropsch Synthesis. Catal Lett 142, 131–137 (2012). https://doi.org/10.1007/s10562-011-0739-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-011-0739-3

Keywords

Navigation