Skip to main content
Log in

Fischer-Tropsch synthesis: Impact of potassium and zirconium promoters on the activity and structure of an ultrafine iron oxide catalyst

  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

Slurry phase Fischer-Tropsch synthesis was conducted with an ultrafine iron oxide catalyst promoted with either 0.5 at% K or 1.0 at% Zr or both. Pretreatment in CO yielded higher conversions and a more stable catalyst than activation in hydrogen or synthesis gas. Hydrogen pretreatment of K promoted catalysts and synthesis gas activation in general were less effective. Mössbauer spectroscopy and XRD showedχ-Fe5C2 and ε′-Fe2.2C were formed during pretreatment in CO and did not depend on promoters present. Catalysts pretreated in H2 were reduced to metallic Fe and Fe3O4; promotion with K and Zr decreased the extent of reduction. Hydrogen pretreated catalysts, promoted with K, lost surface area and carbided rapidly under synthesis conditions. Activation in synthesis gas reduced all catalysts to Fe3O4. Subsequent synthesis did not affect the phase present for the unpromoted and Zr promoted catalysts while those promoted with K formed χ-Fe5C2 and ε′-Fe2.2C. It is concluded that pretreatment type is more important to the catalyst activity during the early period of synthesis than the impact of promotion with K and/or Zr and that changes in the bulk composition of iron catalysts do not necessarily correlate with changes in activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.E. Dry, in:Catalysis- Science and Technology, Vol. 1, eds. J.R. Anderson and M. Boudart (Springer, Berlin, 1981) ch. 4.

    Google Scholar 

  2. R.B. Anderson, in:Catalysis, Vol. 4, ed. P.H. Emmett (Rheinhold, New York, 1956) pp. 29–255.

    Google Scholar 

  3. D.B. Bukur, D. Mukesh and S.A. Patel, Ind. Eng. Chem. Res. 29 (1990) 194.

    Google Scholar 

  4. F.J. Berry and M.R. Smith, J. Chem. Soc. Faraday Trans. 85 (1989) 467.

    Google Scholar 

  5. M.E. Dry and G.J. Oosthuizen, J. Catal. 11 (1968) 18.

    Google Scholar 

  6. D.B. Bukur, X. Lang, D. Mukesh, W.H. Zimmerman, M.P. Rosynek and C. Li, Ind. Eng. Chem. Res. 29 (1990) 1588.

    Google Scholar 

  7. J.A. Amelse, J.B. Butt and L.H. Schwartz, J. Phys. Chem. 82 (1978) 558.

    Google Scholar 

  8. D.B. Bukur, X. Lang, J.A. Rossin, W.H. Zimmerman, M.P. Rosynek, E.B. Yeh and C. Li, Ind. Eng. Chem. Res. 28 (1989) 1130.

    Google Scholar 

  9. M.F. Zarochak and M.A. McDonald,Proc. Indirect Liquefaction Contractors' Meeting, Pittsburgh 1986, p. 58.

  10. H. Abrevaya and P. Shah,Proc. Indirect Liquefaction Contractors' Meeting, Pittsburgh 1990, p. 203.

  11. J.T. McCartney, L.J.E. Hofer, B. Seligman, J.A. Lecky, W.C. Peebles and R.B. Anderson, J. Phys. Chem. 57 (1953) 730.

    Google Scholar 

  12. G. Le Caer, J.M. Dubois, M. Pijolat, V. Perrichon and P. Bussière, J. Phys. Chem. 86 (1982) 4799.

    Google Scholar 

  13. H.C. Eckstrom and W.A. Adcock, J. Am. Chem. Soc. 72 (1950) 1042.

    Google Scholar 

  14. R.B. Anderson,The Fischer-Tropsch Synthesis (Academic Press, Orlando, 1984).

    Google Scholar 

  15. H. Itoh, H. Hosaka, T. Ono and E. Kikuchi, Appl. Catal. 40 (1988) 53.

    Google Scholar 

  16. H. Itoh and E. Kikuchi, Appl. Catal. 67 (1990) 1.

    Google Scholar 

  17. H. Itoh, S. Nagano and E. Kikuchi, Appl. Catal. 67 (1991) 215.

    Google Scholar 

  18. H. Itoh, S. Nagano, T. Urata and E. Kikuchi, Appl. Catal. 77 (1991) 37.

    Google Scholar 

  19. C.-S. Huang, L. Xu and B.H. Davis, Fuel Sci. Technol. Int. 11 (1993) 639.

    Google Scholar 

  20. C.-S. Huang, B. Ganguly, G.P. Huffman, F.E. Huggins and B.H. Davis, Fuel Sci. Technol. Int. 11 (1993) 1289.

    Google Scholar 

  21. L.-M. Tau, H.A. Dabbagh, T.P. Wilson and B.H. Davis, Appl. Catal. 56 (1989) 95.

    Google Scholar 

  22. H.H. Storch, N. Golumbic and R.B. Anderson,The Fischer-Tropsch and Related Synthesis (Wiley, New York, 1951).

    Google Scholar 

  23. P. Ganesan and B.H. Davis, Ind. Eng. Chem. Prod. Res. Dev. 18 (1979) 191.

    Google Scholar 

  24. W.S. Brey and B.H. Davis, J. Catal. 25 (1972) 81.

    Google Scholar 

  25. H. Topsøe and M. Boudart, J. Catal. 31 (1973) 346.

    Google Scholar 

  26. E.S. Lox, G.B. Marin, E. De Grave and P. Bussière, Appl. Catal. 40 (1988) 197.

    Google Scholar 

  27. M.E. Dry, T. Shingle, L.J. Boshoff and G.J. Oosthuizen, J. Catal. 15 (1969) 190.

    Google Scholar 

  28. H. Bernas, I.A. Campbell and R. Fruchart, J. Phys. Chem. Solids 28 (1967) 17.

    Google Scholar 

  29. F. Fischer and H. Tropsch, Brenstoff Chem. 7 (1926) 97.

    Google Scholar 

  30. J.P. Reymond, P. Mériaudeau and S.J. Teichner, J. Catal. 75 (1982) 39.

    Google Scholar 

  31. P. Biloen, J.N. Helle and W.M.H. Sachtler, J. Catal. 58 (1979) 95.

    Google Scholar 

  32. H.-B. Zhang and G.L. Schrader, J. Catal. 95 (1985) 325.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

O'Brien, R.J., Xu, L., Milburn, D.R. et al. Fischer-Tropsch synthesis: Impact of potassium and zirconium promoters on the activity and structure of an ultrafine iron oxide catalyst. Top Catal 2, 1–15 (1995). https://doi.org/10.1007/BF01491951

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01491951

Keywords

Navigation