Skip to main content
Log in

Tuning of the active phase structure and hydrofining performance of alumina-supported tri-metallic WMoNi catalysts via phosphorus incorporation

  • Research Article
  • Published:
Frontiers of Chemical Science and Engineering Aims and scope Submit manuscript

Abstract

The effects of phosphorus on the structure and hydrofining performance of tri-metallic WMoNi/Al2O3 catalysts prepared with W/Mo-based hybrid precursor nanocrystals were investigated. The incorporation of phosphorus weakened the metal-support interactions (MSIs) and facilitated the formation of more synergetic NiWMoS phases with higher stacks. Catalytic tests using a fluid catalytic cracking diesel fuel showed that the changes in the MSIs and the morphology of the active phases had a more positive effect on the hydrodenitrogenation activity than on the hydrodesulfurization activity. In contrast, when phosphorus was incorporated into a tri-metallic WMoNiP/ Al2O3 catalyst prepared by a conventional incipient impregnation method, the MSIs decreased causing aggregation of the metal species which resulted in poorer hydrofining performance of the catalyst. These results show that incorporating phosphorus into a WMoNi/Al2O3 catalyst can finely tune the structure of the active phase to enhance the hydrogenation and hydrodenitrogenation activity of the resulting tri-metallic catalyst.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chen W, Maugé F, van Gestel J, Nie H, Li D, Long X. Effect of modification of the alumina acidity on the properties of supporperties of supported Mo and CoMo sulfide catalysts. Journal of Catalysis, 2013, 304: 47–62

    Article  CAS  Google Scholar 

  2. Zepeda T A, Pawelec B, Obeso-Estrella R, Díaz de León J N, Fuentes S, Alonso-Núñez G, Fierro J L G. Competitive HDS and HDN reactions over NiMoS/HMS-Al catalysts: Diminishing of the inhibition of HDS reaction by support modification with P. Applied Catalysis B: Environmental, 2016, 180: 569–579

    Article  CAS  Google Scholar 

  3. Díaz de León J N, Zepeda T A, Alonso-Nuñez G, Galván D H, Pawelec B, Fuentes S. Insight of 1D γ-Al2O3 nanorods decoration by NiWS nanoslabs in ultra-deep hydrodesulfurization catalyst. Journal of Catalysis, 2015, 321: 51–61

    Article  Google Scholar 

  4. Furimsky E, Massoth F E. Hydrodenitrogenation of petroleum. Catalysis Reviews. Science and Engineering, 2005, 47(3): 297–489

    Article  CAS  Google Scholar 

  5. Pawelec B, Navarro R M, Campos-Martin J M, Fierro J L G. Towards near zero-sulfur liquid fuels: A perspective review. Catalysis Science & Technology, 2011, 1(1): 23–42

    Article  CAS  Google Scholar 

  6. Stanislaus A, Marafi A, Rana M S. Recent advances in the science and technology of ultra low sulfur diesel (ULSD) production. Catalysis Today, 2010, 153(1-2): 1–68

    Article  CAS  Google Scholar 

  7. Cervantes-Gaxiola M E, Arroyo-Albiter M, Pérez-Larios A, Balbuena P B, Espino-Valencia J. Experimental and theoretical study of NiMoW, NiMo, and NiW sulfide catalysts supported on an AlTiMg mixed oxide during the hydrodesulfurization of dibenzothiophene. Fuel, 2013, 113: 733–743

    Article  CAS  Google Scholar 

  8. Thomazeau C, Geantet C, Lacroix M, Danot M, Harlé V, Raybaud P. Predictive approach for the design of improved HDT catalysts: γ-Alumina supported (Ni, Co) promoted Mo1–xWxS2 active phases. Applied Catalysis A, General, 2007, 322: 92–97

    Article  CAS  Google Scholar 

  9. Plantenga F L, Cerfontain R, Eijsbouts S, van Houtert F, Anderson G H, Miseo S, Soled S, Riley K, Fujita K, Inoue Y. 89 “Nebula”: A hydroprocessing catalyst with breakthrough activity. Studies in Surface Science and Catalysis, 2003, 145: 407–410

    Article  CAS  Google Scholar 

  10. Park Y C, Oh E S, Rhee H K. Characterization and catalytic activity of WNiMo/Al2O3 catalyst for hydrodenitrogenation of pyridine. Industrial & Engineering Chemistry Research, 1997, 36(12): 5083–5089

    Article  CAS  Google Scholar 

  11. van Haandel L, Bremmer M, Kooyman P J, van Veen J A R, Weber T, Hensen E J M. Structure-activity correlations in hydrodesulfurization reactions over Ni-promoted MoxW(1–x)S2/Al2O3 catalysts. ACS Catalysis, 2015, 5(12): 7276–7287

    Article  Google Scholar 

  12. Shan S, Liu H, Yue Y, Shi G, Bao X. Trimetallic WMoNi diesel ultra-deep hydrodesulfurization catalysts with enhanced synergism prepared from inorganic-organic hybrid nanocrystals. Journal of Catalysis, 2016, 344: 325–333

    Article  CAS  Google Scholar 

  13. Mushrush G W, Quintana M A, Bauserman J W, Willauer H D. Post-refining removal of organic nitrogen compounds from diesel fuels to improve environmental quality. Journal of Environmental Science and Health. Part A, 2011, 46(2): 176–180

    Article  CAS  Google Scholar 

  14. Prins R. Catalytic hydrodenitrogenation. Advances in Catalysis, 2001, 46: 399–464

    CAS  Google Scholar 

  15. Kraus H, Prins R. The effect of phosphorus on oxidic NiMo(CoMo)/γ-Al2O3 catalysts: A solid state NMR investigation. Journal of Catalysis, 1997, 170(1): 20–28

    Article  CAS  Google Scholar 

  16. Daage M, Chianelli R R. Structure-function relations in molybdenum sulfide catalysts: The “rim-edge” model. Journal of Catalysis, 1994, 149(2): 414–427

    Article  CAS  Google Scholar 

  17. Topsøe H. The role of Co–Mo–S type structures in hydrotreating catalysts. Applied Catalysis A, General, 2007, 322: 3–8

    Article  Google Scholar 

  18. Sun M, Nicosia D, Prins R. The effects of fluorine, phosphate and chelating agents on hydrotreating catalysts and catalysis. Catalysis Today, 2003, 86(1-4): 173–189

    Article  CAS  Google Scholar 

  19. Xiang C E, Chai Y M, Fan J, Liu C G. Effect of phosphorus on the hydrodesulfurization and hydrodenitrogenation performance of presulfided NiMo/Al2O3 catalyst. Journal of Fuel Chemistry and Technology, 2011, 39(5): 355–360

    Article  CAS  Google Scholar 

  20. Shi L, Zhang Z H, Qiu Z G, Guo F, Zhang W, Zhao L F. Effect of phosphorus modification on the catalytic properties of Mo-Ni/Al2O3 in the hydrodenitrogenation of coal tar. Journal of Fuel Chemistry and Technology, 2015, 43(1): 74–80

    Article  Google Scholar 

  21. Rashidi F, Sasaki T, Rashidi A M, Nemati Kharat A, Jozani K J. Ultradeep hydrodesulfurization of diesel fuels using highly efficient nanoalumina-supported catalysts: Impact of support, phosphorus, and/or boron on the structure and catalytic activity. Journal of Catalysis, 2013, 299: 321–335

    Article  CAS  Google Scholar 

  22. Usman Y T, Kubota T, Okamoto Y. Effect of phosphorus addition on the active sites of a Co-Mo/Al2O3 catalyst for the hydrodesulfurization of thiophene. Applied Catalysis A, General, 2007, 328(2): 219–225

    Article  CAS  Google Scholar 

  23. Sigurdson S, Sundaramurthy V, Dalai A K, Adjaye J. Phosphorus promoted trimetallic NiMoW/γ-Al2O3 sulfide catalysts in gas oil hydrotreating. Journal of Molecular Catalysis A Chemical, 2008, 291(1-2): 30–37

    Article  CAS  Google Scholar 

  24. Han W, Yuan P, Fan Y, Shi G, Liu H, Bai D, Bao X. Preparation of supported hydrodesulfurization catalysts with enhanced performance using Mo-based inorganic-organic hybrid nanocrystals as a superior precursor. Journal of Materials Chemistry, 2012, 22(48): 25340–25353

    Article  CAS  Google Scholar 

  25. Shan S, Yuan P, Han W, Shi G, Bao X. Supported NiW catalysts with tunable size and morphology of active phases for highly selective hydrodesulfurization of fluid catalytic cracking naphtha. Journal of Catalysis, 2015, 330: 288–301

    Article  CAS  Google Scholar 

  26. Fan Y, Lu J, Shi G, Liu H, Bao X. Effect of synergism between potassium and phosphorus on selective hydrodesulfurization performance of Co-Mo/Al2O3 FCC gasoline hydro-upgrading catalyst. Catalysis Today, 2007, 125(3-4): 220–228

    Article  CAS  Google Scholar 

  27. Hensen E J M, de Beer V H J, van Veen J A R, van Santen R A. A refinement on the notion of type I and II (Co)MoS phases in hydrotreating catalysts. Catalysis Letters, 2002, 84(1-2): 59–67

    Article  CAS  Google Scholar 

  28. Nikulshin P A, Ishutenko D I, Mozhaev A A, Maslakov K I, Pimerzin A A. Effects of composition and morphology of active phase of CoMo/Al2O3 catalysts prepared using Co2Mo10-heteropolyacid and chelating agents on their catalytic properties in HDS and HYD reactions. Journal of Catalysis, 2014, 312: 152–169

    Article  CAS  Google Scholar 

  29. Ramírez J, Gutiérrez-Alejandre A. Characterization and hydrodesulfurization activity of W-based catalysts supported on Al2O3-TiO2 mixed oxides. Journal of Catalysis, 1997, 170(1): 108–122

    Article  Google Scholar 

  30. Atanasova P, Tabakova T, Vladov C, Halachev T, Lopez Agudo A. Effect of phosphorus concentration and method of preparation on the structure of the oxide form of phosphorus-nickel-tungsten/ alumina hydrotreating catalysts. Applied Catalysis A, General, 1997, 161(1-2): 105–119

    Article  CAS  Google Scholar 

  31. Gutiérrez O Y, Valencia D, Fuentes G A, Klimova T. Mo and NiMo catalysts supported on SBA-15 modified by grafted ZrO2 species: Synthesis, characterization and evaluation in 4,6-dimethyldibenzothiophene hydrodesulfurization. Journal of Catalysis, 2007, 249 (2): 140–153

    Article  Google Scholar 

  32. Mogica-Betancourt J C, López-Benítez A, Montiel-López J R, Massin L, Aouine M, Vrinat M, Berhault G, Guevara-Lara A. Interaction effects of nickel polyoxotungstate with the Al2O3-MgO support for application in dibenzothiophene hydrodesulfurization. Journal of Catalysis, 2014, 313: 9–23

    Article  CAS  Google Scholar 

  33. Li Y, Pan D, Yu C, Fan Y, Bao X. Synthesis and hydrodesulfurization properties of NiW catalyst supported on high-aluminumcontent, highly ordered, and hydrothermally stable Al-SBA-15. Journal of Catalysis, 2012, 286: 124–136

    Article  Google Scholar 

  34. Campelo J M, Garcia A, Luna D, Marinas J M, Romero A A. Characterization of acidity in AlPO4-Al2O3 (5–15 wt-% Al2O3) catalysts using pyridine temperature programmed desorption. Thermochimica Acta, 1995, 265: 103–110

    Article  CAS  Google Scholar 

  35. Ferdous D, Dalai A K, Adjaye J. A series of NiMo/Al2O3 catalysts containing boron and phosphorus: Part I. Synthesis and characterization. Applied Catalysis A, General, 2004, 260(2): 137–151

    Article  CAS  Google Scholar 

  36. Huirache-Acuña R, Zepeda T A, Rivera-Muñoz E M, Nava R, Loricera C V, Pawelec B. Characterization and HDS performance of sulfided CoMoW catalysts supported on mesoporous Al-SBA-16 substrates. Fuel, 2015, 149: 149–161

    Article  Google Scholar 

  37. Fan Y, Xiao H, Shi G, Liu H, Qian Y, Wang T, Gong G, Bao X. Citric acid-assisted hydrothermal method for preparing NiW/USYAl2O3 ultradeep hydrodesulfurization catalysts. Journal of Catalysis, 2011, 279(1): 27–35

    Article  CAS  Google Scholar 

  38. Nikulshin P A, Salnikov V A, Mozhaev A V, Minaev P P, Kogan V M, Pimerzin A A. Relationship between active phase morphology and catalytic properties of the carbon-alumina-supported Co(Ni)Mo catalysts in HDS and HYD reactions. Journal of Catalysis, 2014, 309: 386–396

    Article  CAS  Google Scholar 

  39. Mendoza-Nieto J A, Robles-Méndez F, Klimova T E. Support effect on the catalytic performance of trimetallic NiMoW catalysts prepared with citric acid in HDS of dibenzothiophenes. Catalysis Today, 2015, 250: 47–59

    Article  CAS  Google Scholar 

  40. Xie F Y, Gong L, Liu X, Tao Y T, Zhang W H, Chen S H, Meng H, Chen J. XPS studies on surface reduction of tungsten oxide nanowire film by Ar+ bombardment. Journal of Electron Spectroscopy and Related Phenomena, 2012, 185(3): 112–118

    Article  CAS  Google Scholar 

  41. Wachs I E, Kim T, Ross E I. Catalysis science of the solid acidity of model supported tungsten oxide catalysts. Catalysis Today, 2006, 116(2): 162–168

    Article  CAS  Google Scholar 

  42. Fan Y, Xiao H, Shi G, Liu H, Bao X. A novel approach for modulating the morphology of supported metal nanoparticles in hydrodesulfurization catalysts. Energy & Environmental Science, 2011, 4(2): 572–582

    Article  CAS  Google Scholar 

  43. Amaya S L, Alonso-Núñez G, Zepeda T A, Fuentes S, Echavarría A. Effect of the divalent metal and the activation temperature of NiMoW and CoMoW on the dibenzothiophene hydrodesulfurization reaction. Applied Catalysis B: Environmental, 2014, 148-149: 221–230

    Article  CAS  Google Scholar 

  44. Hensen E J M, Kooyman P J, van der Meer Y, van der Kraan A M, de Beer V H J, van Veen J A R, van Santen R A. The relation between morphology and hydrotreating activity for supported MoS2 particles. Journal of Catalysis, 2001, 199(2): 224–235

    Article  CAS  Google Scholar 

  45. Ferdous D, Dalai A K, Adjaye J. A series of NiMo/Al2O3 catalysts containing boron and phosphorus: Part II. Hydrodenitrogenation and hydrodesulfurization using heavy gas oil derived from Athabasca bitumen. Applied Catalysis A, General, 2004, 260(2): 153–162

    CAS  Google Scholar 

  46. Trejo F, Rana M S, Ancheyta J, Chávez S. Influence of support and supported phases on catalytic functionalities of hydrotreating catalysts. Fuel, 2014, 138: 104–110

    Article  CAS  Google Scholar 

  47. Zdražil M. Recent advances in catalysis over sulphides. Catalysis Today, 1988, 3(4): 269–365

    Article  Google Scholar 

  48. Wang I, Chang R C. Catalytic hydrodesulfurization and hydrodenitrogenation over Co-Mo on TiO2-ZrO2-V2O5. Journal of Catalysis, 1989, 117(1): 266–274

    Article  CAS  Google Scholar 

  49. Stanislaus A, Cooper B H. Aromatic hydrogenation catalysis: A review. Catalysis Reviews. Science and Engineering, 1994, 36(1): 75–123

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the support from the National Natural Science Foundation of China (Grant Nos. U1462203 and 21106182).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Haiyan Liu or Xiaojun Bao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shan, S., Liu, H., Shi, G. et al. Tuning of the active phase structure and hydrofining performance of alumina-supported tri-metallic WMoNi catalysts via phosphorus incorporation. Front. Chem. Sci. Eng. 12, 59–69 (2018). https://doi.org/10.1007/s11705-017-1686-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11705-017-1686-3

Keywords

Navigation