Skip to main content
Log in

The Effect of Al2O3 Pore Diameter on the Fischer–Tropsch Synthesis Performance of Co/Al2O3 Catalyst

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

In order to investigate the effect of γ-alumina pore size on the ability of alumina-supported cobalt (Co/Al2O3) catalysts in Fischer–Tropsch synthesis (FTS), ordered mesoporous alumina (OMA) samples with different pore sizes (4.8, 7.2, 9.7 and 12.6 nm) were synthesized by various methods. Co/OMA catalysts with a Co loading of 15 wt% were prepared by the impregnation method. N2 physisorption, X-Ray Diffraction (XRD), H2-Temperature-Programmed Reduction (H2-TPR), and H2 Temperature-Programmed desorption (H2-TPD) experiments were conducted to characterize the structure and properties of these catalysts, and the catalyst structure–FTS performance relationships were also analyzed. The TOF increases with OMA pore size increase from 4.8 to 9.7 nm and decreased when the OMA pore size increased further to 12.6 nm. The C5+ selectivity of catalysts increases with OMA pore size, while the CH4 selectivity decreased with which. The Co3O4 particle size of catalysts were depended highly on the OMA pore size, which was the vital factor affecting the performance of catalyst.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Zhou W, Cheng K, Kang J et al (2019) New horizon in C1 chemistry: breaking the selectivity limitation in transformation of syngas and hydrogenation of CO2 into hydrocarbon chemicals and fuels. Chem Soc Rev 48:3193–3228. https://doi.org/10.1039/C8CS00502H

    Article  CAS  PubMed  Google Scholar 

  2. Bao J, Yang G, Yoneyama Y et al (2019) Significant advances in C1 catalysis: highly efficient catalysts and catalytic reactions. ACS Catal 9:3026–3053. https://doi.org/10.1021/acscatal.8b03924

    Article  CAS  Google Scholar 

  3. Chen Y, Wei J, Duyar MS et al (2021) Carbon-based catalysts for Fischer-Tropsch synthesis. Chem Soc Rev 50:2337–2366. https://doi.org/10.1039/D0CS00905A

    Article  CAS  PubMed  Google Scholar 

  4. Khodakov AY, Chu W, Fongarland P (2007) Advances in the development of novel cobalt Fischer-Tropsch catalysts for synthesis of long-chain hydrocarbons and clean fuels. Chem Rev 107:1692–1744. https://doi.org/10.1021/cr050972v

    Article  CAS  PubMed  Google Scholar 

  5. de Smit E, Weckhuysen BM (2008) The renaissance of iron-based Fischer-Tropsch synthesis: on the multifaceted catalyst deactivation behaviour. Chem Soc Rev 37:2758–2781. https://doi.org/10.1039/B805427D

    Article  PubMed  Google Scholar 

  6. Wei JT, Chen YP, Ma YF et al (2021) Precisely engineering architectures of Co/C sub-microreactors for selective syngas conversion. Small 17:2100082. https://doi.org/10.1002/smll.202100082

    Article  CAS  Google Scholar 

  7. Chen YP, Ma LX, Zhang RG et al (2022) Carbon-supported Fe catalysts with well-defined active sites for highly selective alcohol production from Fischer-Tropsch synthesis. Appl Catal B Environ 312:121393. https://doi.org/10.1016/j.apcatb.2022.121393

    Article  CAS  Google Scholar 

  8. Wang J, Lu AH, Li M et al (2013) Thin porous alumina sheets as supports for stabilizing gold nanoparticles. ACS Nano 7:4902–4910. https://doi.org/10.1021/nn401446p

    Article  CAS  PubMed  Google Scholar 

  9. Shi L, Deng GM, Li WC et al (2015) Al2O3 nanosheets rich in pentacoordinate Al3+ ions stabilize Pt-Sn clusters for propane dehydrogenation. Angew Chem Int Ed 54:13994–13998. https://doi.org/10.1002/anie.201507119

    Article  CAS  Google Scholar 

  10. Chu W, Chernavskii P, Gengembre L et al (2007) Cobalt species in promoted cobalt alumina-supported Fischer-Tropsch catalysts. J Catal 252:215–230. https://doi.org/10.1016/j.jcat.2007.09.018

    Article  CAS  Google Scholar 

  11. Liu CC, Hong JP, Zhang YH et al (2016) Synthesis of gamma-Al2O3 nanofibers stabilized Co3O4 nanoparticles as highly active and stable Fischer-Tropsch synthesis catalysts. Fuel 180:777–784. https://doi.org/10.1016/j.fuel.2016.04.006

    Article  CAS  Google Scholar 

  12. Liu CC, Zhang YH, Zhao YX et al (2017) The effect of the nanofibrous Al2O3 aspect ratio on Fischer-Tropsch synthesis over cobalt catalysts. Nanoscale 9:570–581. https://doi.org/10.1039/C6NR07529K

    Article  CAS  PubMed  Google Scholar 

  13. Rane S, Borg O, Yang J et al (2010) Effect of alumina phases on hydrocarbon selectivity in Fischer-Tropsch synthesis. Appl Catal A 388:160–167. https://doi.org/10.1016/j.apcata.2010.08.038

    Article  CAS  Google Scholar 

  14. Rytter E, Holmen A (2016) On the support in cobalt Fischer-Tropsch synthesis-emphasis on alumina and aluminates. Catal Today 275:11–19. https://doi.org/10.1016/j.cattod.2015.11.042

    Article  CAS  Google Scholar 

  15. Enger BC, Fossan AL, Borg O et al (2011) Modified alumina as catalyst support for cobalt in the Fischer-Tropsch synthesis. J Catal 284:9–22. https://doi.org/10.1016/j.jcat.2011.08.008

    Article  CAS  Google Scholar 

  16. Xiong HF, Zhang YH, Wang SG et al (2005) Fischer-Tropsch synthesis: the effect of Al2O3 porosity on the performance of Co/Al2O3 catalyst. Catal Commun 6:512–516. https://doi.org/10.1016/j.catcom.2005.04.018

    Article  CAS  Google Scholar 

  17. Wei L, Zhao YX, Zhang YH et al (2016) Fischer-Tropsch synthesis over a 3D foamed MCF silica support: toward a more open porous network of cobalt catalysts. J Catal 340:205–218. https://doi.org/10.1016/j.jcat.2016.04.019

    Article  CAS  Google Scholar 

  18. Li HL, Wang SG, Ling FX et al (2006) Studies on MCM-48 supported cobalt catalyst for Fischer-Tropsch synthesis. J Mol Catal A Chem 244:33–40. https://doi.org/10.1016/j.molcata.2005.08.050

    Article  CAS  Google Scholar 

  19. Xiong HF, Zhang YH, Liew KY et al (2008) Fischer-Tropsch synthesis: the role of pore size for Co/SBA-15 catalysts. J Mol Catal A Chem 295:68–76. https://doi.org/10.1016/j.molcata.2008.08.017

    Article  CAS  Google Scholar 

  20. Li JH, Xu Y, Wu D et al (2009) Hollow mesoporous silica sphere supported cobalt catalysts for F-T synthesis. Catal Today 148:148–152. https://doi.org/10.1016/j.cattod.2009.02.046

    Article  CAS  Google Scholar 

  21. González O, Pérez H, Navarro P et al (2009) Use of different mesostructured materials based on silica as cobalt supports for the Fischer-Tropsch synthesis. Catal Today 148:140–147. https://doi.org/10.1016/j.cattod.2009.03.030

    Article  CAS  Google Scholar 

  22. Yuan Q, Yin AX, Luo C et al (2008) Facile synthesis for ordered mesoporous γ-aluminas with high thermal stability. J Am Chem Soc 130:3465–3472. https://doi.org/10.1021/ja0764308

    Article  CAS  PubMed  Google Scholar 

  23. Suman KJ, Reiichi N, Kazuya S et al (2004) Pore size control of mesoporous molecular sieves using different organic auxiliary chemicals. Microporous Mesoporous Mater 68:133–142. https://doi.org/10.1016/j.micromeso.2003.12.010

    Article  CAS  Google Scholar 

  24. Cai WQ, Yu JG, Anand C et al (2011) Facile synthesis of ordered mesoporous alumina and alumina-supported metal oxides with tailored adsorption and framework properties. Chem Mater 23:1147–1157. https://doi.org/10.1021/cm102512v

    Article  CAS  Google Scholar 

  25. Wu QL, Zhang F, Yang JP et al (2011) Synthesis of ordered mesoporous alumina with large pore sizes and hierarchical structure. Microporous Mesoporous Mater 143:406–412. https://doi.org/10.1016/j.micromeso.2011.03.033

    Article  CAS  Google Scholar 

  26. Morris SM, Fulvio PF, Jaroniec M et al (2008) Ordered mesoporous alumina-supported metal oxides. Chem Soc 130:15210–15216. https://doi.org/10.1021/ja806429q

    Article  CAS  Google Scholar 

  27. Bezemer GL, Bitter JH, Herman PCEK et al (2006) Cobalt particle size effects in the Fischer-Tropsch reaction studied with carbon nanofiber supported catalysts. J Am Chem Soc 128:3956–3972. https://doi.org/10.1021/ja058282w

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yuhua Zhang or Jinlin Li.

Ethics declarations

Conflict of interest

There is no confict of interest for each contributing author.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 8064 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ai, X., Zhang, Y., Lyu, S. et al. The Effect of Al2O3 Pore Diameter on the Fischer–Tropsch Synthesis Performance of Co/Al2O3 Catalyst. Catal Lett 153, 3689–3697 (2023). https://doi.org/10.1007/s10562-022-04231-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-022-04231-9

Keywords

Navigation