Skip to main content
Log in

Synthesis, Characterization and HDS Activity of Carbon-Containing Ni–Mo Sulfide Nano-Spheres

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Ni-promoted tetramethylammonium tetrathiomolybdate precursor was prepared by the aqueous solution precipitation method using (NH4)2MoS4, (CH3)4NBr and NiCl2.6H2O as raw materials. Carbon-containing Ni–Mo sulfide nanospheres, namely Ni/C1–MoS2, were obtained by ex situ thermal decomposition of the precursor under N2 atmosphere. Energy dispersive X-ray spectroscopy (EDS), low temperature N2 adsorption (BET method), X-ray diffraction (XRD), scanning electron microscopy (SEM) and high resolution transmission electron microscopy (HRTEM) techniques were employed to characterize these as–synthesized sulfide particles. The results showed that the average size of solid Ni–Mo sulfide nanospheres, with surface composition MoNi0.40S0.73C1.43, is 75 nm and the solid structure leads to low surface area of Ni/C1–MoS2. In addition, the introduction of methyl chain improved the dispersion of nickel phases and resulted in C/Mo ratio, 1.4. By comparison with catalytic performance of the Ni/MoS2 catalyst counterpart, Ni/C1–MoS2 revealed lower HDS activity but higher direct desulfurization (DDS) selectivity. Lower stacking number of MoS2 slabs (5 layers) and shorter slabs length of MoS2 slabs (6 nm) explained higher DDS selectivity satisfactorily. The formation of carbon-containing Ni–Mo sulfide nanospheres was possibly due to surfactant effect of tetramethylammonium cations and the potential measure to increase their surface area was discussed as well in this work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Final Report of the European Commission about the Revision of the Directive 98/70/EC

  2. Topsøe H, Clausen BS (1996) In: Anderson JR, Boudarts M (eds) Hydrotreating catalysis–catalysis, catalysis science and technology, vol 11. Springer-Verlag, Berlin, p 111

    Google Scholar 

  3. Hensen EJM, De Beer VHJ, van Santen RA (1997) In: Weber Th, Prins R, van Santen RA (eds) Transition metal sulfides, chemistry and catalysis. NATO ASI Series Kluwer, Dordrecht, p 169

    Google Scholar 

  4. Nava H, Pedraza F, Alonso G (2005) Catal Lett 99:65

    Article  CAS  Google Scholar 

  5. Kabe T, Qian WH, Ishihara A (1994) J Catal 149:171

    Article  CAS  Google Scholar 

  6. Qian WH, Ishihara A, Ogawa S, Kabe T (1994) J Phys Chem 98:907

    Article  CAS  Google Scholar 

  7. Kung TN, Hercules MD (1976) J Phys Chem 80:2094

    Article  Google Scholar 

  8. Breysse M, Cattenot M, Decamp T, Frety R, Gachet C, Lacroix M, Leclercq C, de Mourgues L, Portefaix JL, Vrinat M, Houari M, Grimblot J, Kasztelan S, Bonnelle JP, Housni S, Bachelier J, Duchet JC (1988) Catal Today 4:39

    Article  CAS  Google Scholar 

  9. Scheffer B, Mangnus PJ, Moulijn JA (1990) J Catal 121:18

    Article  CAS  Google Scholar 

  10. Frety R, Breysse M, Lacroix M, Vrinat M (1984) Bull Soc Chim Belg 93:663

    CAS  Google Scholar 

  11. Ramanathan K, Weller SW (1985) J Catal 95:249

    Article  CAS  Google Scholar 

  12. Poisot M, Bensch W, Fuentes S, Ornelas C (2007) G Alonso Catal Lett 117:43

    Article  CAS  Google Scholar 

  13. Alonso G, Petranovskii V, Del Valle M, Cruz-Reyes J, Licea-Claverie A, Fuentes S (2000) Appl Catal A Gen 197:87

    Article  CAS  Google Scholar 

  14. Álvarez L, Espino J, Ornelas C, Rico JL, Cortez MT, Berhault G, Alonso G (2004) J Mole Catal A Chem 210:105

    Article  Google Scholar 

  15. Alonso G, Espino J, Berhault G, Alvarez L, Rico JL (2004) Appl Catal A Gen 266:29

    Article  CAS  Google Scholar 

  16. Álvarez L, Berhault G, Alonso-Nuñez G (2008) Catal Lett 125:35

    Article  Google Scholar 

  17. Callahan PK, Piliero PA (1980) Inorg Chem 19:2619

    Article  CAS  Google Scholar 

  18. Trakarnpruk W, Seentrakoon B (2007) Ind Eng Chem Res 46:1874

    Article  CAS  Google Scholar 

  19. Genuit D, Afanasiev P, Vrinat M (2005) J Catal 235:302

    Article  CAS  Google Scholar 

  20. Huirache-Acuña R, Albiter MA, Ornelas C, Paraguay-Delgado F, Martínez-Sánchez R, Alonso-Nuñez G (2006) Appl Catal A Gen 308:134

    Article  Google Scholar 

  21. Ishihara A, Itoh T, Hino T, Nomura M, Qi PY, Kabe T (1993) J Catal 140:184

    Article  CAS  Google Scholar 

  22. Jacobson AJ, Chianelli RR, Pecoraro TA (1987) U.S. Patent 4,650,563

    Google Scholar 

  23. Sajkowski DJ, Oyama ST (1996) Appl Catal A 134:339

    Article  CAS  Google Scholar 

  24. Whitehurst DD, Isoda T, Mochida I (1998) Adv Catal 42:345

    Article  CAS  Google Scholar 

  25. Pecoraro TA, Chianelli RR (1985) U.S. Patent 4,528,089

    Google Scholar 

  26. Berhault G, Mehta A, Pavel AC, Yang JZ, Rendon L, Yácaman MJ, Araiza LC, Moller AD, Chianelli RR (2001) J Catal 198:9

    Article  CAS  Google Scholar 

  27. Berhault G, Araiza LC, Moller AD, Mehta A, Chianelli RR (2002) Catal Lett 78:81

    Article  CAS  Google Scholar 

  28. Kelty SP, Berhault G, Chianelli RR (2007) Appl Catal A Gen 322:9

    Article  CAS  Google Scholar 

  29. Espino J, Alvareza L, Ornelas C, Rico JL, Fuentes S, Berhault G, Alonso G (2003) Catal Lett 90:71

    Article  CAS  Google Scholar 

  30. Bataille F, Lemberton JL, Michaud P, Pérot G, Vrinat M, Lemaire M, Schulz E, Breysse M, Kasztelan S (2000) J Catal 191:409

    Article  CAS  Google Scholar 

  31. Tye CT, Smith KJ (2006) Catal Today 116:461

    Article  CAS  Google Scholar 

  32. Daage M, Yardley P, Chianelli RR (1993) U.S.Patent:5186818

  33. Daage M, Chianelli RR (1994) J Catal 149:414

    Article  CAS  Google Scholar 

  34. Nava H, Pedraza F, Alonso G (2005) Catal Lett 99:65

    Article  CAS  Google Scholar 

  35. Topsøe H, Candia R, Topsøe NY (1984) Bull De Soci Chim Bel 93:783

    Google Scholar 

  36. Massoth FE, Muralidhar G, Shabtai J (1984) J Catal 85:53

    Article  CAS  Google Scholar 

  37. Hensen EJM, Kooyman PJ, van der Meer Y, van der Kraan AM, de Beer VHJ, van Veen JAR, van Santen RA (2001) J Catal 199:224

    Article  CAS  Google Scholar 

  38. Alonso G, Berhault G, Aguilar A, Collins V, Ornelas C, Fuentes S, Chianelli RR (2002) J Catal 208:359

    Article  CAS  Google Scholar 

  39. Vradman L, Landau MV (2001) Catal Lett 77:47

    Article  CAS  Google Scholar 

  40. Hensen EJM, Kooyman PJ, van der Meer Y et al (2001) J Catal 199:224

    Article  CAS  Google Scholar 

  41. Skrabalak SE, Suslick KS (2005) J Am Chem Soc 127:9990

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the basic research program ‘Green chemistry and engineering of heavy oil conversion with high efficiency’ and the National Key Fundamental Research Development Project (973 Project: No.2010CB226905).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chenguang Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhou, T., Yin, H., Liu, Y. et al. Synthesis, Characterization and HDS Activity of Carbon-Containing Ni–Mo Sulfide Nano-Spheres. Catal Lett 134, 343–350 (2010). https://doi.org/10.1007/s10562-009-0210-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-009-0210-x

Keywords

Navigation