Skip to main content
Log in

Adsorption and separation of ethyl mercaptan from methane gas on Ni–Ti–LDH nanosheets

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In this work, the removal of ethyl mercaptan (EM) from methane mixture by Ni–Ti layered hydroxide (Ni–Ti–LDH) was studied. Ni–Ti–LDH and its nanosheets (Ni–Ti–LDH–NS) were prepared through a co-precipitation and exfoliation–reassembled method. The as-prepared samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), attenuated total reflectance Fourier transform infrared (ATR, FT-IR) spectroscopy, electron paramagnetic resonance (EPR), X-ray photoelectron spectroscopy (XPS), and N2 adsorption–desorption measurements. In addition, the specific surface area (156.9 m2/g) and total pore volume (0.63 cm3/g) of Ni–Ti–LDH–NS show better EM removal ability (49.41 mg/g at 298 K and 12,000 h−1), which is significantly higher than that of Ni–Ti–LDH (19.76 mg/g). Finally, the calculation results of density functional theory (DFT) show that nitrate had little effect on the overall adsorption performance in Ni–Ti–LDH. The adsorption of EM on Ni–Ti–LDH/NS is mainly through the hydrogen-bond interaction between S atom and H atom in hydroxyl group and the formation of coordination with exposed Ni and Ti atoms. This work broadens the application range of hydrotalcite materials as R-SH efficient adsorbent based on hydrogen bond and coordination bond interaction, and helps to enrich the application of hydrogen bond and coordination bond.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. J. Zhou, P. Ning, Environ. Prot. 45(4), 68–70 (2017)

    Google Scholar 

  2. M. Brauer, G. Freedman, J. Frostad, Environ. Sci. Technol. 50(1), 79–88 (2016)

    Article  ADS  Google Scholar 

  3. K. Alam, T. Blaschke, P. Madl, J. Environ. Monit. Jem. 13(7), 1944–1952 (2011)

    Article  Google Scholar 

  4. J. Cheng, D. Tong, Y. Liu, Faraday Discuss. 226, 584–606 (2021)

    Article  ADS  Google Scholar 

  5. A. Jiang, B. Liu, Y. Cheng, High Technol. Lett. 01, 85–88 (2003)

    Google Scholar 

  6. S. Zhao, H. Yi, X. Tang, J. cleaner Prod. 87, 856 (2015)

    Article  Google Scholar 

  7. H. Li, Y. Liu, Y. Yang, J. Photochem. Photobiol. A. 291, 9 (2014)

    Article  Google Scholar 

  8. K. Li, G. Liu, T. Gao, Appl. Catal. A. 527, 171 (2016)

    Article  Google Scholar 

  9. V. Pendyala, G. Jacobs, W. Ma, Catal. Today. 299, 14 (2018)

    Article  Google Scholar 

  10. F. Liu, D. He, J. Lu, J. Chin. Soc. Rare Earths. 36(1), 53–60 (2018)

    ADS  Google Scholar 

  11. X. Ma, H. Liu, W. Li, RSC Adv. 6(99), 96997–97003 (2016)

    Article  ADS  Google Scholar 

  12. Y. Ma, L. Shi, Y. Liu, J. Chem. 2017, 1–9 (2017)

    Article  Google Scholar 

  13. W. Wang, L. Fan, G. Wang, Appl. Surf. Sci. 414(31), 92–100 (2017)

    Article  ADS  Google Scholar 

  14. J. Zhu, L. Hu, J. He, J. Nat. Gas Sci. Eng. 94, 104133 (2021)

    Article  Google Scholar 

  15. T A. Saleh, Advanced Desulfurization Technologies and Mechanisms. pp.1–24 (2020)

  16. Z. Deng, T. Wang, Z. Wang, Chem. Eng. Sci. 65(1), 480–486 (2010)

    Article  Google Scholar 

  17. W. Zhou, Y. Zhang, X. Tao, Fuel 228, 152–163 (2018)

    Article  Google Scholar 

  18. X. Fang, R. Guo, C. Yang, Chin. J. Catal. 34, 130–139 (2013)

    Article  Google Scholar 

  19. H. Liu, C. Yin, H. Zhang, Chin. J. Catal. 37(9), 1502–1511 (2016)

    Article  Google Scholar 

  20. A. Stanislaus, A. Marafi, M.S. Rana, Catal. Today. 153(1–2), 1–68 (2010)

    Article  Google Scholar 

  21. J. Yin, J. Wang, Z. Li, Green Chem. 17, 4552–4559 (2015)

    Article  Google Scholar 

  22. C. Li, J. Zhang, Z. Li, Green Chem. 18, 3789–3795 (2016)

    Article  Google Scholar 

  23. H. Chen, H. Wu, Q.W. Wang, Energy Fuels. 33(9), 9241–9248 (2019)

    Article  Google Scholar 

  24. H. Sun, Z. Magnuson, W. He, A.C.S. Appl, Mater. Interfaces. 12(18), 20664–20671 (2020)

    Article  Google Scholar 

  25. X. Meng, H. Huang, L. Shi, Ind. Eng. Chem. Res. 52(18), 6092–6100 (2013)

    Article  Google Scholar 

  26. R. Bhuvaneswari, V. Nagarajan, R. Chandiramouli, Phys. B. 586(14), 412135 (2020)

    Article  Google Scholar 

  27. X. Zhang, L. Wang, L. Hu, Ind. Eng. Chem. Res. 60(23), 8504–8515 (2021)

    Article  Google Scholar 

  28. X. Zhang, L. Hu, L. Wang, Langmuir 38(4), 1497–1508 (2022)

    Article  Google Scholar 

  29. L. Wang, X. Zhang, J. H, Inorg. Chem. Commun.140, 109440 (2022)

  30. Q. Liu, Q. Zhao, Y. Qi, Natural Gas and Oil. 39(6), 39–44 (2021)

    Google Scholar 

  31. J. Yu, Q. Wang, Chem. Soc. Rev. 46, 5950–5974 (2017)

    Article  Google Scholar 

  32. H. Yi, S. Liu, C. Lai, Adv. Energy Mater. 11(14), 2002863 (2021)

    Article  Google Scholar 

  33. F. Wen, Y. Xie, S. Song, Energy Environ. Mater. 2(3), 158–171 (2019)

    Article  Google Scholar 

  34. W. Kohn, L.J. Sham, Phys. Rev. A. 137(6A), 1697–1705 (1965)

    Article  ADS  Google Scholar 

  35. C. Hu, Y. Chen, J. Li, Appl. Surf. Sci. 254(20), 6514–6520 (2008)

    Article  ADS  Google Scholar 

  36. J. Li, Jinan University. (2020)

  37. W. Xu, R. Wang, Y. Du, New J. Chem. 43, 2019–2029 (2019)

    Article  Google Scholar 

  38. W. Zhang, X. Guo, J. He, J. Eur. Ceram. Soc. 28(8), 1623–1629 (2008)

    Article  Google Scholar 

  39. W. Zhao, J. Wang, F. Liu, Acta Phys. Sin. 5, 3352–3358 (2009)

    Article  Google Scholar 

  40. J.P. Perdew, K. Burke, M., Ernzerhof. Phys. Rev. Lett. 77, 3865–3868 (1996)

    Article  ADS  Google Scholar 

  41. G.I. Prayogo, H. Shin, A. Benali, ACS Omega 6(38), 24630–24636 (2021)

    Article  Google Scholar 

  42. H. Zhang, X. Jing, M. Zhang, J. Inorg. Chem. 18(2), 185–189 (2002)

    Google Scholar 

  43. T. Zhou, K. Zhan, F. LI, J. Inorg. Chem. 18(8), 777–781 (2002)

  44. A.R. Setoodeh, H. Farahmand, Mech. Mater. 117, 181–191 (2017)

    Article  Google Scholar 

  45. H. Farahmand, A.R. Setoodeh, Comput. Mater. Sci. 124, 390–397 (2016)

    Article  Google Scholar 

  46. Z. Shu, Q. Guo, Y. Chen, Appl. Clay Sci. 149, 13–19 (2017)

    Article  Google Scholar 

  47. M.A. Ahmed, A.A. Brick, A.A. Mohamed, Chemosphere 174, 280–288 (2017)

    Article  ADS  Google Scholar 

  48. W. Gao, J. He, J. Anhui University of Science and Technology Company (Natural Science Edition). 31(1), 8–12, 2011

  49. S. Pavithraa, R. Methikkalam, P. Gorai, Spectrochim. Acta, Part A 178, 166–170 (2017)

    Article  Google Scholar 

  50. Y. Duan, J. Feng, Y. Zhu, RSC Adv. 8(67), 38606–38613 (2018)

    Article  ADS  Google Scholar 

  51. Q. Cao, Shenyang Normal University. (2021)

  52. H. Qiao, Dalian University of technology. (2018)

  53. J.C. Groen, L. Peffer, J. Pérez-Ramírez, Microporous Mesoporous Mater. 60(1–3), 1–17 (2003)

    Article  Google Scholar 

  54. Y. Yang, M. Yang, Z. Zheng, Environ. Sci. Pollut. Res. 27, 13396–13408 (2020)

    Article  Google Scholar 

  55. J. Liang, R. Ma, N. lyi, Chem. Mater. 22(2), 371–378 (2010)

  56. Y. Wang, T. Chen, Q. Mu, J. Mater. Chem. 21(16), 6006–6013 (2011)

    Article  Google Scholar 

  57. H. Guan, Y. Tong, J. Chem. Phys. (02), 79–85 (1997)

  58. D. He, G. Wan, H. Hao, Chem. Eng. J. 289, 161–169 (2016)

    Article  Google Scholar 

  59. Y. Lyu, X. Liu, W. Liu, Chem. Eng. J. 393, 124680 (2020)

    Article  Google Scholar 

  60. S. Zhao, H. Yi, X. Tang, J. Cleaner Prod. 87(1), 856–861 (2015)

    Article  Google Scholar 

  61. Y. Lin, T. Tseng, H. Chu, Appl. Catal. A. 469, 221–228 (2014)

    Article  Google Scholar 

  62. Q. Liu, M. Ke, P. Yu, Korean J. Chem. Eng. 35, 137–146 (2018)

    Article  Google Scholar 

  63. P. Zhu, X. Yin, X. Gao, Chin. J. Catal. 42(1), 175–183 (2021)

    Article  Google Scholar 

  64. Q. He, X. Shi, X. Wang, Journal of Tangshan Normal University. 39(5), 2 (2017)

    Google Scholar 

Download references

Acknowledgements

The authors in this work thank the supports financially from the National Natural Science Foundation of China (No. 21271008), the Natural Science Foundation of Anhui Province (No. 2008085QE194), and the Research Foundation of the Institute of Environment-friendly Materials and Occupational Health of Anhui University of Science and Technology (Wuhu) (No. ALW2020YF01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie He.

Ethics declarations

Conflicts of interest

We have no financial and personal relationships with other people or organizations that can inappropriately influence our work, and there is no professional or other personal interest of any nature or kind in any product, service and/or company that could be construed as influencing the position presented in, or the review of the manuscript entitled.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, H., Hu, L., Zhang, X. et al. Adsorption and separation of ethyl mercaptan from methane gas on Ni–Ti–LDH nanosheets. Appl. Phys. A 128, 687 (2022). https://doi.org/10.1007/s00339-022-05807-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-022-05807-3

Keywords

Navigation