Skip to main content
Log in

Effect of the SiO2 support morphology on the hydrodesulfurization performance of NiMo catalysts

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

To study the effects of the support morphology on the hydrodesulfurization (HDS) activity of NiMoS catalysts, ordered mesoporous SiO2 (KIT-6) and nonporous nanospheres of SiO2 were used as supports. Metal species (Ni and Mo) were incorporated through a sequential impregnation technique. The aqueous solution of nickel nitrate was introduced first on the supports, followed by the solution of ammonium molybdate. Subsequently, a sulfidation treatment was carried out in gaseous H2S/H2 atmosphere. The NiMo/Al2O3 commercial catalyst was used as reference. The materials obtained were characterized by N2 physisorption, X-ray diffraction (XRD), and high-resolution transmission electron microscopy (HRTEM) and evaluated in the HDS catalytic reaction of dibenzothiophene in a batch reactor. The results indicate that the textural properties of KIT-6 were the key factors to obtain disperse NiMoS stacks, and a better metal sulfidation, which lead to a higher catalytic activity of the NiMo/KIT-6 catalyst (twice as active) compared to the NiMo/Nanosilica catalyst. In addition, the activity of the NiMo/KIT-6 catalyst was also superior to that obtained for the commercial catalyst.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7

Similar content being viewed by others

References

  1. F.J. Méndez, O.E. Franco-López, X. Bokhimi, D.A. Solís-Casados, L. Escobar-Alarcón, and T.E. Klimova: Dibenzothiophene hydrodesulfurization with NiMo and CoMo catalysts supported on niobium-modified MCM-41. Appl. Catal., B 219, 479 (2017).

    Article  Google Scholar 

  2. C. Song: An overview of new approaches to deep desulfurization for ultra-clean gasoline, diesel fuel and jet fuel. Catal. Today 86, 211 (2003).

    Article  CAS  Google Scholar 

  3. O.Y. Gutiérrez, S. Singh, E. Schachtl, J. Kim, E. Kondratieva, J. Hein, and J.A. Lercher: Effects of the support on the performance and promotion of (Ni)MoS2 catalysts for simultaneous hydrodenitrogenation and hydrodesulfurization. ACS Catal. 4, 1487 (2014).

    Article  Google Scholar 

  4. S. Damyanova, L. Petrov, M.A. Centeno, and P. Grange: Characterization of molybdenum hydrodesulfurization catalysts supported on ZrO2–Al2O3 and ZrO2–SiO2 carriers. Appl. Catal., A 224, 271 (2002).

    Article  CAS  Google Scholar 

  5. M.S. Rana, V. Sámano, J. Ancheyta, and J.A.I. Diaz: A review of recent advances on process technologies for upgrading of heavy oils and residua. Fuel 86, 1216 (2007).

    Article  CAS  Google Scholar 

  6. J. Shabtai: Catalytic functionalities of supported sulfides. J. Catal. 423, 413 (1987).

    Article  Google Scholar 

  7. M.S. Rana, B.N. Srinivas, S.K. Maity, G. Murali Dhar, and T.S.R. Prasada Rao: Origin of cracking functionality of sulfided (Ni) CoMo/SiO2–ZrO2 catalysts. J. Catal. 195, 31 (2000).

    Article  CAS  Google Scholar 

  8. F. Bataille, J.L. Lemberton, G. Pérot, P. Leyrit, T. Cseri, N. Marchal, and S. Kasztelan: Sulfided Mo and CoMo supported on zeolite as hydrodesulfurization catalysts: Transformation of dibenzothiophene and 4,6-dimethyldibenzothiophene. Appl. Catal., A 220, 191 (2001).

    Article  CAS  Google Scholar 

  9. N. Bejenaru, C. Lancelot, P. Blanchard, C. Lamonier, L. Rouleau, E. Payen, F. Dumeignil, and S. Royer: Synthesis, characterization, and catalytic performances of novel CoMo hydrodesulfurization catalysts supported on mesoporous aluminas. Chem. Mater. 21, 522 (2009).

    Article  CAS  Google Scholar 

  10. C.T. Kresge, M.E. Leonowicz, W.J. Roth, J.C. Vartuli, and J.S. Beck: Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature 359, 710 (1992).

    Article  CAS  Google Scholar 

  11. Y. Okamoto, M. Breysse, G. Murali Dhar, and C. Song: Effect of support in hydrotreating catalysis for ultra clean fuels. Catal. Today 86, 1 (2003).

    Article  CAS  Google Scholar 

  12. T. Kabe, A. Ishihara, W. Qian, and P. Yao: Hydrodesulfurization of dibenzothiophene over siliceous MCM-41-supported catalysts II. Sulfided Ni–Mo catalysts. J. Catal. 210, 319 (2002).

    Article  Google Scholar 

  13. T. Klimova, M. Calderón, and J. Ramírez: Ni and Mo interaction with Al-containing MCM-41 support and its effect on the catalytic behavior in DBT hydrodesulfurization. Appl. Catal., A 240, 29 (2003).

    Article  CAS  Google Scholar 

  14. U.T. Turaga, X. Ma, and C. Song: Influence of nitrogen compounds on deep hydrodesulfurization of 4,6-dimethyldibenzothiophene over Al2O3- and MCM-41-supported Co–Mo sulfide catalysts. Catal. Today 86, 265 (2003).

    Article  CAS  Google Scholar 

  15. K. Soni, B.S. Rana, A.K. Sinha, A. Bhaumik, M. Nandi, M. Kumar, and G.M. Dhar: 3-D ordered mesoporous KIT-6 support for effective hydrodesulfurization catalysts. Appl. Catal., B 90, 55 (2009).

    Article  CAS  Google Scholar 

  16. P. Rao, M. Dhar, R. Advances, A. Aspects, I.C. Studies, S. Science, and E.S.B.V.: All: T.S.R. Prasada Rao and G. Murali Dhar (Editors) Recent Advances in Basic and Applied Aspects of Industrial Catalysis Studies in Surface Science and Catalysis, Vol. 113 9 1998 Elsevier Science B.V. All rights. 113, 41 (1998).

  17. P. Rao: Modification of catalytic functions of ZSM-5 with special reference to aromatization and NTGG process. Studies in Surface Science and Catalysis, 113, 41 (1998).

    Article  Google Scholar 

  18. R. Prins, V. de Beer, and G. Somorjai: Structure and function of the catalyst and the promoter in Co–Mo hydrodesulfurization catalysts. Catal. Rev.: Sci. Eng. 31, 1 (1989).

    Article  CAS  Google Scholar 

  19. W. Han, H. Nie, X. Long, M. Li, Q. Yang, and D. Li: Effects of the support BrØnsted acidity on the hydrodesulfurization and hydrodenitrogention activity of sulfided NiMo/Al2O3 catalysts. Catal. Today 292, 58 (2017).

    Article  CAS  Google Scholar 

  20. W. Zhou, Q. Zhang, Y. Zhou, W. Qiang, L. Du, S. Ding, S. Jiang, and Y. Zhang: Effects of Ga-and-P-modified USY-based NiMoS catalysts on ultra-deep hydrodesulfurization for FCC diesels. Catal. Today 305, 171 (2018).

    Article  CAS  Google Scholar 

  21. J. Sollner, D.F. Gonzalez, J.H. Leal, T.M. Eubanks, and J.G. Parsons: HDS of dibenzothiophene with CoMoS2 synthesized using elemental sulfur. Inorg. Chim. Acta 466, 212 (2017).

    Article  CAS  Google Scholar 

  22. X. Liu, B. Tian, C. Yu, F. Gao, S. Xie, B. Tu, R. Che, L.M. Peng, and D. Zhao: Room-temperature synthesis in acidic media of large-pore three-dimensional bicontinuous mesoporous silica with Ia 3 d symmetry. Angew. Chem., Int. Ed. 41, 3876 (2002).

    Article  CAS  Google Scholar 

  23. H. Wu, A. Duan, Z. Zhao, D. Qi, J. Li, B. Liu, G. Jiang, J. Liu, Y. Wei, and X. Zhang: Preparation of NiMo/KIT-6 hydrodesulfurization catalysts with tunable sulfidation and dispersion degrees of active phase by addition of citric acid as chelating agent. Fuel 130, 203 (2014).

    Article  CAS  Google Scholar 

  24. S. Liu, J. Chen, Y. Peng, F. Hu, K. Li, H. Song, X. Li, Y. Zhang, and J. Li: Studies on toluene adsorption performance and hydrophobic property in phenyl functionalized KIT-6. Chem. Eng. J. 334, 191 (2018).

    Article  CAS  Google Scholar 

  25. S. Wei, H. He, Y. Cheng, C. Yang, G. Zeng, L. Kang, H. Qian, and C. Zhu: Preparation, characterization, and catalytic performances of cobalt catalysts supported on KIT-6 silicas in oxidative desulfurization of dibenzothiophene. Fuel 200, 11 (2017).

    Article  CAS  Google Scholar 

  26. X. Zhao, Y. Zheng, Y. Zheng, Y. Zhan, and X. Zheng: Preparation and pore structure stability at high temperature of silicon-doped ordered mesoporous alumina. RSC Adv. 4, 12497 (2014).

    Article  CAS  Google Scholar 

  27. G. Alonso-Núñez, J. Bocarando, R. Huirache-Acuña, L. Álvarez-Contreras, Z.D. Huang, W. Bensch, G. Berhault, J. Cruz, T.A. Zepeda, and S. Fuentes: Influence of the activation atmosphere on the hydrodesulfurization of Co–Mo/SBA-15 catalysts prepared from sulfur-containing precursors. Appl. Catal., A 419–420, 95 (2012).

    Article  Google Scholar 

  28. M. Ramos, G. Berhault, D.A. Ferrer, B. Torres, and R.R. Chianelli: HRTEM and molecular modeling of the MoS2–Co9S8 interface: Understanding the promotion effect in bulk HDS catalysts. Catal. Sci. Technol. 2, 164 (2012).

    Article  CAS  Google Scholar 

  29. N. Frizi, P. Blanchard, E. Payen, P. Baranek, M. Rebeilleau, C. Dupuy, and J.P. Dath: Genesis of new HDS catalysts through a careful control of the sulfidation of both Co and Mo atoms: Study of their activation under gas phase. Catal. Today 130, 272 (2008).

    Article  CAS  Google Scholar 

  30. A. Burneau, O. Barrès, A. Vidal, H. Balard, G. Ligner, and E. Papirer: Comparative study of the surface hydroxyl groups of fumed and precipitated silicas. 3. DRIFT characterization of grafted n-hexadecyl chains. Langmuir 6, 1389 (1990).

    Article  CAS  Google Scholar 

  31. K.M.M. Davis and M. Tomozawa: Water diffusion into silica glass—Structural-changes in silica glass and their effect on water solubility and diffusivity. J. Non-Cryst. Solids 185, 203 (1995).

    Article  CAS  Google Scholar 

  32. A. Alessi, S. Agnello, G. Buscarino, and F.M. Gelardi: Raman and IR investigation of silica nanoparticles structure. J. Non-Cryst. Solids 362, 20 (2013).

    Article  CAS  Google Scholar 

  33. M. Takahashi, Y. Iwasawa, and S. Ogasawara: The nature of adsorbed sites on catalysts. J. Catal. 24, 15 (1976).

    Article  Google Scholar 

  34. R. Huirache-Acuña, B. Pawelec, C.V. Loricera, E.M. Rivera-Muñoz, R. Nava, B. Torres, and J.L.G. Fierro: Comparison of the morphology and HDS activity of ternary Ni(Co)–Mo–W catalysts supported on Al-HMS and Al-SBA-16 substrates. Appl. Catal., B 125, 473 (2012).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors gratefully acknowledge the Mexican Council of Science and Technology (CONACYT) and the Energy Department (SENER) for supporting this work through the projects CONACYT-SENER-Hidrocarburos No. 120135. In addition, the authors acknowledge the excellent work of César Leyva Porras, Carlos Elías Ornelas Gutiérrez, Francisco Enrique Longoria Rodríguez, Luis Gerardo Silva Vidaurri, and Luis de la Torre Saenz for their technical assistance in this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lorena Alvarez Contreras.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Delgado, A.D., Contreras, L.A., Beltrán, K.A. et al. Effect of the SiO2 support morphology on the hydrodesulfurization performance of NiMo catalysts. Journal of Materials Research 33, 3646–3655 (2018). https://doi.org/10.1557/jmr.2018.382

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2018.382

Navigation