Skip to main content

Advertisement

Log in

Genetically engineered mucin mouse models for inflammation and cancer

  • Non-Thematic Review
  • Published:
Cancer and Metastasis Reviews Aims and scope Submit manuscript

Abstract

Mucins are heavily O-glycosylated proteins primarily produced by glandular and ductal epithelial cells, either in membrane-tethered or secretory forms, for providing lubrication and protection from various exogenous and endogenous insults. However, recent studies have linked their aberrant overexpression with infection, inflammation, and cancer that underscores their importance in tissue homeostasis. In this review, we present current status of the existing mouse models that have been developed to gain insights into the functional role(s) of mucins under physiological and pathological conditions. Knockout mouse models for membrane-associated (Muc1 and Muc16) and secretory mucins (Muc2) have helped us to elucidate the role of mucins in providing effective and protective barrier functions against pathological threats, participation in disease progression, and improved our understanding of mucin interaction with biotic and abiotic environmental components. Emphasis is also given to available transgenic mouse models (MUC1 and MUC7), which has been exploited to understand the context-dependent regulation and therapeutic potential of human mucins during inflammation and cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

MUC1:

Human mucin

Muc1:

Mouse mucin

KO:

Knockout

KI:

Knockin

Tg:

Transgenic

KC:

Cre-LSL-KrasG12D

KCM:

KC mice with human MUC1 overexpression

KCKO:

KC mice with Muc1 knockout

CF:

Cystic fibrosis

SEA:

Sperm protein, enterokinase, and agrin domain

EGF-L:

Epidermal growth factor (EGF)-like domain

D domain:

Dimerization domain

TR:

Variable number of tandem repeats

Ser:

Serine

Thr:

Threonine

Pro:

Proline

TM:

Transmembrane

CT:

Cytoplasmic tail

CTCK:

Cystine knot-like domain

rCCSP:

Rat Clara cell secretory protein

vWD:

Von Willebrand

T-reg:

Regulatory T cells

WT:

Wild type

CTL:

Cytotoxic T lymphocytes

APCs:

Antigen-presenting cells

CSCs:

Cancer stem cells

References

  1. Montagne, L., Piel, C., & Lalles, J. P. (2004). Effect of diet on mucin kinetics and composition: nutrition and health implications. Nutrition Reviews, 62, 105–114.

    Article  CAS  PubMed  Google Scholar 

  2. Kufe, D. W. (2009). Mucins in cancer: function, prognosis and therapy. Nature Reviews Cancer, 9, 874–885.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Rachagani, S., Torres, M. P., Moniaux, N., & Batra, S. K. (2009). Current status of mucins in the diagnosis and therapy of cancer. Biofactors, 35, 509–527.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Kaur, S., Kumar, S., Momi, N., Sasson, A. R., & Batra, S. K. (2013). Mucins in pancreatic cancer and its microenvironment. Nature Reviews Gastroenterol Hepatology, 10, 607–620.

    Article  CAS  Google Scholar 

  5. Andrianifahanana, M., Moniaux, N., & Batra, S. K. (2006). Regulation of mucin expression: mechanistic aspects and implications for cancer and inflammatory diseases. Biochimica et Biophysica Acta (BBA) - Reviews on Cancer, 1765, 189–222.

    Article  CAS  Google Scholar 

  6. Itoh, Y., Kamata-Sakurai, M., Denda-Nagai, K., Nagai, S., Tsuiji, M., Ishii-Schrade, K., et al. (2008). Identification and expression of human epiglycanin/MUC21: a novel transmembrane mucin. Glycobiology, 18, 74–83.

    Article  CAS  PubMed  Google Scholar 

  7. Buisine, M. P., Desreumaux, P., Leteurtre, E., Copin, M. C., Colombel, J. F., Porchet, N., et al. (2001). Mucin gene expression in intestinal epithelial cells in Crohn’s disease. Gut, 49, 544–551.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Corfield, A. P., Myerscough, N., Longman, R., Sylvester, P., Arul, S., & Pignatelli, M. (2000). Mucins and mucosal protection in the gastrointestinal tract: new prospects for mucins in the pathology of gastrointestinal disease. Gut, 47, 589–594.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Singh, A. P., Chauhan, S. C., Bafna, S., Johansson, S. L., Smith, L. M., Moniaux, N., et al. (2006). Aberrant expression of transmembrane mucins, MUC1 and MUC4, in human prostate carcinomas. Prostate, 66, 421–429.

    Article  CAS  PubMed  Google Scholar 

  10. Mukhopadhyay, P., Lakshmanan, I., Ponnusamy, M. P., Chakraborty, S., Jain, M., Pai, P., et al. (2013). MUC4 overexpression augments cell migration and metastasis through EGFR family proteins in triple negative breast cancer cells. PLoS One, 8, e54455.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Senapati, S., Chaturvedi, P., Sharma, P., Venkatraman, G., Meza, J. L., El-Rifai, W., et al. (2008). Deregulation of MUC4 in gastric adenocarcinoma: potential pathobiological implication in poorly differentiated non-signet ring cell type gastric cancer. British Journal of Cancer, 99, 949–956.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Chauhan, S. C., Singh, A. P., Ruiz, F., Johansson, S. L., Jain, M., Smith, L. M., et al. (2006). Aberrant expression of MUC4 in ovarian carcinoma: diagnostic significance alone and in combination with MUC1 and MUC16 (CA125). Modern Pathology, 19, 1386–1394.

    Article  CAS  PubMed  Google Scholar 

  13. Chaturvedi, P., Singh, A. P., Moniaux, N., Senapati, S., Chakraborty, S., Meza, J. L., et al. (2007). MUC4 mucin potentiates pancreatic tumor cell proliferation, survival, and invasive properties and interferes with its interaction to extracellular matrix proteins. Molecular Cancer Research, 5, 309–320.

    Article  CAS  PubMed  Google Scholar 

  14. Chaturvedi, P., Singh, A. P., Chakraborty, S., Chauhan, S. C., Bafna, S., Meza, J. L., et al. (2008). MUC4 mucin interacts with and stabilizes the HER2 oncoprotein in human pancreatic cancer cells. Cancer Research, 68, 2065–2070.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Ponnusamy, M. P., Singh, A. P., Jain, M., Chakraborty, S., Moniaux, N., & Batra, S. K. (2008). MUC4 activates HER2 signalling and enhances the motility of human ovarian cancer cells. British Journal of Cancer, 99, 520–526.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Singh, P. K., & Hollingsworth, M. A. (2006). Cell surface-associated mucins in signal transduction. Trends in Cell Biology, 16, 467–476.

    Article  CAS  PubMed  Google Scholar 

  17. Ahmad, R., Raina, D., Trivedi, V., Ren, J., Rajabi, H., Kharbanda, S., et al. (2007). MUC1 oncoprotein activates the IkappaB kinase beta complex and constitutive NF-kappaB signalling. Nature Cell Biology, 9, 1419–1427.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Rachagani, S., Macha, M. A., Ponnusamy, M. P., Haridas, D., Kaur, S., Jain, M., et al. (2012). MUC4 potentiates invasion and metastasis of pancreatic cancer cells through stabilization of fibroblast growth factor receptor 1. Carcinogenesis, 33, 1953–1964.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Kumar, S., Das, S., Rachagani, S., Kaur, S., Joshi, S., Johansson, S. L., et al. (2014). NCOA3-mediated upregulation of mucin expression via transcriptional and post-translational changes during the development of pancreatic cancer. Oncogene. doi:10.1038/onc.2014.409.

    Google Scholar 

  20. Li, Y., Liu, D., Chen, D., Kharbanda, S., & Kufe, D. (2003). Human DF3/MUC1 carcinoma-associated protein functions as an oncogene. Oncogene, 22, 6107–6110.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Moniaux, N., Chaturvedi, P., Varshney, G. C., Meza, J. L., Rodriguez-Sierra, J. F., Aubert, J. P., et al. (2007). Human MUC4 mucin induces ultra-structural changes and tumorigenicity in pancreatic cancer cells. British Journal of Cancer, 97, 345–357.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Singh, A. P., Moniaux, N., Chauhan, S. C., Meza, J. L., & Batra, S. K. (2004). Inhibition of MUC4 expression suppresses pancreatic tumor cell growth and metastasis. Cancer Research, 64, 622–630.

    Article  CAS  PubMed  Google Scholar 

  23. Tsutsumida, H., Swanson, B. J., Singh, P. K., Caffrey, T. C., Kitajima, S., Goto, M., et al. (2006). RNA interference suppression of MUC1 reduces the growth rate and metastatic phenotype of human pancreatic cancer cells. Clinical Cancer Research, 12, 2976–2987.

    Article  CAS  PubMed  Google Scholar 

  24. Qiu, W., & Su, G. H. (2013). Challenges and advances in mouse modeling for human pancreatic tumorigenesis and metastasis. Cancer Metastasis Review, 32, 83–107.

    Article  CAS  Google Scholar 

  25. Li, Q., Ren, J., & Kufe, D. (2004). Interaction of human MUC1 and beta-catenin is regulated by Lck and ZAP-70 in activated Jurkat T cells. Biochemical and Biophysical Research Communications, 315, 471–476.

    Article  CAS  PubMed  Google Scholar 

  26. Poh, T. W., Bradley, J. M., Mukherjee, P., & Gendler, S. J. (2009). Lack of Muc1-regulated beta-catenin stability results in aberrant expansion of CD11b+Gr1+ myeloid-derived suppressor cells from the bone marrow. Cancer Research, 69, 3554–3562.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Gu, H., Marth, J. D., Orban, P. C., Mossmann, H., & Rajewsky, K. (1994). Deletion of a DNA polymerase beta gene segment in T cells using cell type-specific gene targeting. Science, 265, 103–106.

    Article  CAS  PubMed  Google Scholar 

  28. Long, D. P., Zhao, A. C., Chen, X. J., Zhang, Y., Lu, W. J., Guo, Q., et al. (2012). FLP recombinase-mediated site-specific recombination in silkworm, Bombyx mori. PLoS One. doi:10.1371/journal.pone.0040150.

    Google Scholar 

  29. Shekels, L. L., & Ho, S. B. (2003). Characterization of the mouse Muc3 membrane bound intestinal mucin 5′ coding and promoter regions: regulation by inflammatory cytokines. Biochimica et Biophysica Acta (BBA) - Gene Structure and Expression, 1627, 90–100.

    Article  CAS  Google Scholar 

  30. Gum, J. R., Jr., Crawley, S. C., Hicks, J. W., Szymkowski, D. E., & Kim, Y. S. (2002). MUC17, a novel membrane-tethered mucin. Biochemical and Biophysical Research Communications, 291, 466–475.

    Article  CAS  PubMed  Google Scholar 

  31. Senapati, S., Das, S., & Batra, S. K. (2010). Mucin-interacting proteins: from function to therapeutics. Trends in Biochemical Sciences, 35, 236–245.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Joshi, S., Kumar, S., Choudhury, A., Ponnusamy, M. P., & Batra, S. K. (2014). Altered mucins (MUC) trafficking in benign and malignant conditions. Oncotarget, 5, 7272–7284.

    Article  PubMed Central  PubMed  Google Scholar 

  33. Spicer, A. P., Parry, G., Patton, S., & Gendler, S. J. (1991). Molecular cloning and analysis of the mouse homologue of the tumor-associated mucin, MUC1, reveals conservation of potential O-glycosylation sites, transmembrane, and cytoplasmic domains and a loss of minisatellite-like polymorphism. Journal of Biological Chemistry, 266, 15099–15109.

    CAS  PubMed  Google Scholar 

  34. Shekels, L. L., Lyftogt, C., Kieliszewski, M., Filie, J. D., Kozak, C. A., & Ho, S. B. (1995). Mouse gastric mucin: cloning and chromosomal localization. Biochemical Journal, 311(Pt. 3), 775–785.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Desseyn, J. L., Clavereau, I., & Laine, A. (2002). Cloning, chromosomal localization and characterization of the murine mucin gene orthologous to human MUC4. European Journal of Biochemistry, 269, 3150–3159.

    Article  CAS  PubMed  Google Scholar 

  36. Maeda, T., Inoue, M., Koshiba, S., Yabuki, T., Aoki, M., Nunokawa, E., et al. (2004). Solution structure of the SEA domain from the murine homologue of ovarian cancer antigen CA125 (MUC16). Journal of Biological Chemistry, 279, 13174–13182.

    Article  CAS  PubMed  Google Scholar 

  37. Goodell, C. A., Belisle, J. A., Gubbels, J. A., Migneault, M., Rancourt, C., Connor, J., et al. (2009). Characterization of the tumor marker muc16 (ca125) expressed by murine ovarian tumor cell lines and identification of a panel of cross-reactive monoclonal antibodies. Journal of Ovarian Research. doi:10.1186/1757-2215-2-8.

    PubMed Central  PubMed  Google Scholar 

  38. Dougherty, G. J., Kay, R. J., & Humphries, R. K. (1989). Molecular cloning of 114/A10, a cell surface antigen containing highly conserved repeated elements, which is expressed by murine hemopoietic progenitor cells and interleukin-3-dependent cell lines. Journal of Biological Chemistry, 264, 6509–6514.

    CAS  PubMed  Google Scholar 

  39. Williams, S. J., Wreschner, D. H., Tran, M., Eyre, H. J., Sutherland, G. R., & McGuckin, M. A. (2001). Muc13, a novel human cell surface mucin expressed by epithelial and hemopoietic cells. Journal of Biological Chemistry, 276, 18327–18336.

    Article  CAS  PubMed  Google Scholar 

  40. Higuchi, T., Orita, T., Nakanishi, S., Katsuya, K., Watanabe, H., Yamasaki, Y., et al. (2004). Molecular cloning, genomic structure, and expression analysis of MUC20, a novel mucin protein, up-regulated in injured kidney. Journal of Biological Chemistry, 279, 1968–1979.

    Article  CAS  PubMed  Google Scholar 

  41. Chen, Y., Zhao, Y. H., Kalaslavadi, T. B., Hamati, E., Nehrke, K., Le, A. D., et al. (2004). Genome-wide search and identification of a novel gel-forming mucin MUC19/Muc19 in glandular tissues. American Journal of Respiratory Cell and Molecular Biology, 30, 155–165.

    Article  CAS  PubMed  Google Scholar 

  42. Desseyn, J. L., & Laine, A. (2003). Characterization of mouse muc6 and evidence of conservation of the gel-forming mucin gene cluster between human and mouse. Genomics, 81, 433–436.

    Article  CAS  PubMed  Google Scholar 

  43. Pigny, P., Guyonnet-Duperat, V., Hill, A. S., Pratt, W. S., Galiegue Zouitina, S., D’Hooge, M. C., et al. (1996). Human mucin genes assigned to 11p15.5: identification and organization of a cluster of genes. Genomics, 38, 340–352.

    Article  CAS  PubMed  Google Scholar 

  44. Johansson, M. E., Larsson, J. M., & Hansson, G. C. (2011). The two mucus layers of colon are organized by the MUC2 mucin, whereas the outer layer is a legislator of host-microbial interactions. Proceedings of the National Academy of Sciences of the United States of America, 108(Suppl 1), 4659–4665.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  45. Aslam, F., Palumbo, L., Augenlicht, L. H., & Velcich, A. (2001). The Sp family of transcription factors in the regulation of the human and mouse MUC2 gene promoters. Cancer Research, 61, 570–576.

    CAS  PubMed  Google Scholar 

  46. Van Klinken, B. J., Einerhand, A. W., Duits, L. A., Makkink, M. K., Tytgat, K. M., Renes, I. B., et al. (1999). Gastrointestinal expression and partial cDNA cloning of murine Muc2. Americal Journal of Physiology, 276, G115–G124.

    Google Scholar 

  47. Inatomi, T., Tisdale, A. S., Zhan, Q., Spurr-Michaud, S., & Gipson, I. K. (1997). Cloning of rat Muc5AC mucin gene: comparison of its structure and tissue distribution to that of human and mouse homologues. Biochemical and Biophysical Research Communications, 236, 789–797.

    Article  CAS  PubMed  Google Scholar 

  48. Escande, F., Porchet, N., Aubert, J. P., & Buisine, M. P. (2002). The mouse Muc5b mucin gene: cDNA and genomic structures, chromosomal localization and expression. Biochemical Journal, 363, 589–598.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  49. Culp, D. J., Latchney, L. R., Fallon, M. A., Denny, P. A., Denny, P. C., Couwenhoven, R. I., et al. (2004). The gene encoding mouse Muc19: cDNA, genomic organization and relationship to Smgc. Physiological Genomics, 19, 303–318.

    Article  CAS  PubMed  Google Scholar 

  50. Toribara, N. W., Ho, S. B., Gum, E., Gum, J. R., Jr., Lau, P., & Kim, Y. S. (1997). The carboxyl-terminal sequence of the human secretory mucin, MUC6. Analysis of the primary amino acid sequence. Journal of Biological Chemistry, 272, 16398–16403.

    Article  CAS  PubMed  Google Scholar 

  51. Spicer, A. P., Rowse, G. J., Lidner, T. K., & Gendler, S. J. (1995). Delayed mammary tumor progression in Muc-1 null mice. Journal of Biological Chemistry, 270, 30093–30101.

    Article  CAS  PubMed  Google Scholar 

  52. Wang, H. H., Afdhal, N. H., Gendler, S. J., & Wang, D. Q. (2004). Targeted disruption of the murine mucin gene 1 decreases susceptibility to cholesterol gallstone formation. Journal of Lipid Research, 45, 438–447.

    Article  CAS  PubMed  Google Scholar 

  53. Parmley, R. R., & Gendler, S. J. (1998). Cystic fibrosis mice lacking Muc1 have reduced amounts of intestinal mucus. Journal of Clinical Investigation, 102, 1798–1806.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  54. Besmer, D. M., Curry, J. M., Roy, L. D., Tinder, T. L., Sahraei, M., Schettini, J., et al. (2011). Pancreatic ductal adenocarcinoma mice lacking mucin 1 have a profound defect in tumor growth and metastasis. Cancer Research, 71, 4432–4442.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  55. Nath, S., Daneshvar, K., Roy, L. D., Grover, P., Kidiyoor, A., Mosley, L., et al. (2013). MUC1 induces drug resistance in pancreatic cancer cells via upregulation of multidrug resistance genes. Oncogenesis. doi:10.1038/oncsis.2013.16.

    PubMed Central  PubMed  Google Scholar 

  56. Nagaraj, S., Collazo, M., Corzo, C. A., Youn, J. I., Ortiz, M., Quiceno, D., et al. (2009). Regulatory myeloid suppressor cells in health and disease. Cancer Research, 69, 7503–7506.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  57. Linden, S. K., Sheng, Y. H., Every, A. L., Miles, K. M., Skoog, E. C., Florin, T. H., et al. (2009). MUC1 limits Helicobacter pylori infection both by steric hindrance and by acting as a releasable decoy. PLoS Pathogens. doi:10.1371/journal.ppat.1000617.

    Google Scholar 

  58. McGuckin, M. A., Every, A. L., Skene, C. D., Linden, S. K., Chionh, Y. T., Swierczak, A., et al. (2007). Muc1 mucin limits both Helicobacter pylori colonization of the murine gastric mucosa and associated gastritis. Gastroenterology, 133, 1210–1218.

    Article  CAS  PubMed  Google Scholar 

  59. Velcich, A., Yang, W., Heyer, J., Fragale, A., Nicholas, C., Viani, S., et al. (2002). Colorectal cancer in mice genetically deficient in the mucin Muc2. Science, 295, 1726–1729.

    Article  CAS  PubMed  Google Scholar 

  60. Yang, W., Velcich, A., Lozonschi, I., Liang, J., Nicholas, C., Zhuang, M., et al. (2005). Inactivation of p21WAF1/cip1 enhances intestinal tumor formation in Muc2-/- mice. American Journal of Pathology, 166, 1239–1246.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  61. Burger-van, P. N., van der Sluis, M., Bouma, J., Korteland-van Male, A. M., Lu, P., Van, S. I., et al. (2011). Colitis development during the suckling-weaning transition in mucin Muc2-deficient mice. American Journal of Physiology-Gastrointestinal and Liver Physiology, 301, G667–G678.

    Article  CAS  Google Scholar 

  62. Lu, P., Burger-van, P. N., van der Sluis, M., Witte-Bouma, J., Kerckaert, J. P., van Goudoever, J. B., et al. (2011). Colonic gene expression patterns of mucin Muc2 knockout mice reveal various phases in colitis development. Inflammatory Bowel Diseases, 17, 2047–2057.

    Article  PubMed  Google Scholar 

  63. Moeeni, V., & Day, A. S. (2011). Impact of Inflammatory bowel disease upon growth in children and adolescents. International Scholarly Research Notices: Pediatrics, 2011, 365712.

    CAS  Google Scholar 

  64. Van der Sluis, M., De Koning, B. A., De Bruijn, A. C., Velcich, A., Meijerink, J. P., Van Goudoever, J. B., et al. (2006). Muc2-deficient mice spontaneously develop colitis, indicating that MUC2 is critical for colonic protection. Gastroenterology, 131, 117–129.

    Article  PubMed  CAS  Google Scholar 

  65. Berg, D. J., Davidson, N., Kuhn, R., Muller, W., Menon, S., Holland, G., et al. (1996). Enterocolitis and colon cancer in interleukin-10-deficient mice are associated with aberrant cytokine production and CD4(+) TH1-like responses. Journal of Clinical Investigation, 98, 1010–1020.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  66. Schwerbrock, N. M., Makkink, M. K., van der Sluis, M., Buller, H. A., Einerhand, A. W., Sartor, R. B., et al. (2004). Interleukin 10-deficient mice exhibit defective colonic Muc2 synthesis before and after induction of colitis by commensal bacteria. Inflammatory Bowel Diseases, 10, 811–823.

    Article  PubMed  Google Scholar 

  67. van der Sluis, M., Bouma, J., Vincent, A., Velcich, A., Carraway, K. L., Buller, H. A., et al. (2008). Combined defects in epithelial and immunoregulatory factors exacerbate the pathogenesis of inflammation: mucin 2-interleukin 10-deficient mice. Laboratory Investigation, 88, 634–642.

    Article  PubMed  CAS  Google Scholar 

  68. Verburg, M., Renes, I. B., Meijer, H. P., Taminiau, J. A., Buller, H. A., Einerhand, A. W., et al. (2000). Selective sparing of goblet cells and paneth cells in the intestine of methotrexate-treated rats. American Journal of Physiology-Gastrointestinal and Liver Physiology, 279, G1037–G1047.

    CAS  PubMed  Google Scholar 

  69. Guy-Grand, D., DiSanto, J. P., Henchoz, P., Malassis-Seris, M., & Vassalli, P. (1998). Small bowel enteropathy: role of intraepithelial lymphocytes and of cytokines (IL-12, IFN-gamma, TNF) in the induction of epithelial cell death and renewal. European Journal of Immunology, 28, 730–744.

    Article  CAS  PubMed  Google Scholar 

  70. Sellon, R. K., Tonkonogy, S., Schultz, M., Dieleman, L. A., Grenther, W., Balish, E., et al. (1998). Resident enteric bacteria are necessary for development of spontaneous colitis and immune system activation in interleukin-10-deficient mice. Infection and Immunity, 66, 5224–5231.

    PubMed Central  CAS  PubMed  Google Scholar 

  71. de Koning, B. A., Sluis, M., Lindenbergh-Kortleve, D. J., Velcich, A., Pieters, R., Buller, H. A., et al. (2007). Methotrexate-induced mucositis in mucin 2-deficient mice. Journal of Cellular Physiology, 210, 144–152.

    Article  PubMed  CAS  Google Scholar 

  72. Bergstrom, K. S., Kissoon-Singh, V., Gibson, D. L., Ma, C., Montero, M., Sham, H. P., et al. (2010). Muc2 protects against lethal infectious colitis by disassociating pathogenic and commensal bacteria from the colonic mucosa. PLoS Pathogens. doi:10.1371/journal.ppat.1000902.

    PubMed Central  PubMed  Google Scholar 

  73. Hasnain, S. Z., Wang, H., Ghia, J. E., Haq, N., Deng, Y., Velcich, A., et al. (2010). Mucin gene deficiency in mice impairs host resistance to an enteric parasitic infection. Gastroenterology, 138, 1763–1771.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  74. Cheon, D. J., Wang, Y., Deng, J. M., Lu, Z., Xiao, L., Chen, C. M., et al. (2009). CA125/MUC16 is dispensable for mouse development and reproduction. PLoS One. doi:10.1371/journal.pone.0004675.

    Google Scholar 

  75. Tian,H., Spriggs, DR (2011). Conditional transgenic mice for the carboxyl-terminus of MUC16. Cancer Research, 71(8 Suppl).doi:10.1158/1538-7445.AM2011-4332.

  76. Shimizu, A., Hirono, S., Tani, M., Kawai, M., Okada, K., Miyazawa, M., et al. (2012). Coexpression of MUC16 and mesothelin is related to the invasion process in pancreatic ductal adenocarcinoma. Cancer Science, 103, 739–746.

    Article  CAS  PubMed  Google Scholar 

  77. Wang, Y., Cheon, D. J., Lu, Z., Cunningham, S. L., Chen, C. M., Luo, R. Z., et al. (2008). MUC16 expression during embryogenesis, in adult tissues, and ovarian cancer in the mouse. Differentiation, 76, 1081–1092.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  78. Lakshmanan, I., Ponnusamy, M. P., Das, S., Chakraborty, S., Haridas, D., Mukhopadhyay, P., et al. (2012). MUC16 induced rapid G2/M transition via interactions with JAK2 for increased proliferation and anti-apoptosis in breast cancer cells. Oncogene, 31, 805–817.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  79. Peat, N., Gendler, S. J., Lalani, N., Duhig, T., & Taylor-Papadimitriou, J. (1992). Tissue-specific expression of a human polymorphic epithelial mucin (MUC1) in transgenic mice. Cancer Research, 52, 1954–1960.

    CAS  PubMed  Google Scholar 

  80. Schroeder, J. A., Thompson, M. C., Gardner, M. M., & Gendler, S. J. (2001). Transgenic MUC1 interacts with epidermal growth factor receptor and correlates with mitogen-activated protein kinase activation in the mouse mammary gland. Journal of Biological Chemistry, 276, 13057–13064.

    Article  CAS  PubMed  Google Scholar 

  81. Schroeder, J. A., Masri, A. A., Adriance, M. C., Tessier, J. C., Kotlarczyk, K. L., Thompson, M. C., et al. (2004). MUC1 overexpression results in mammary gland tumorigenesis and prolonged alveolar differentiation. Oncogene, 23, 5739–5747.

    Article  CAS  PubMed  Google Scholar 

  82. Woo, J. K., Choi, Y., Oh, S. H., Jeong, J. H., Choi, D. H., Seo, H. S., et al. (2012). Mucin 1 enhances the tumor angiogenic response by activation of the AKT signaling pathway. Oncogene, 31, 2187–2198.

    Article  CAS  PubMed  Google Scholar 

  83. Beatty, P. L., Plevy, S. E., Sepulveda, A. R., & Finn, O. J. (2007). Cutting edge: transgenic expression of human MUC1 in IL-10-/- mice accelerates inflammatory bowel disease and progression to colon cancer. Journal of Immunology, 179, 735–739.

    Article  CAS  Google Scholar 

  84. Tinder, T. L., Subramani, D. B., Basu, G. D., Bradley, J. M., Schettini, J., Million, A., et al. (2008). MUC1 enhances tumor progression and contributes toward immunosuppression in a mouse model of spontaneous pancreatic adenocarcinoma. Journal of Immunology, 181, 3116–3125.

    Article  CAS  Google Scholar 

  85. Rowse, G. J., Tempero, R. M., VanLith, M. L., Hollingsworth, M. A., & Gendler, S. J. (1998). Tolerance and immunity to MUC1 in a human MUC1 transgenic murine model. Cancer Research, 58, 315–321.

    CAS  PubMed  Google Scholar 

  86. Mukherjee, P., Ginardi, A. R., Madsen, C. S., Sterner, C. J., Adriance, M. C., Tevethia, M. J., et al. (2000). Mice with spontaneous pancreatic cancer naturally develop MUC-1-specific CTLs that eradicate tumors when adoptively transferred. Journal of Immunology, 165, 3451–3460.

    Article  CAS  Google Scholar 

  87. Akporiaye, E. T., Bradley-Dunlop, D., Gendler, S. J., Mukherjee, P., Madsen, C. S., Hahn, T., et al. (2007). Characterization of the MUC1.Tg/MIN transgenic mouse as a model for studying antigen-specific immunotherapy of adenomas. Vaccine, 25, 6965–6974.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  88. Lakshminarayanan, V., Thompson, P., Wolfert, M. A., Buskas, T., Bradley, J. M., Pathangey, L. B., et al. (2012). Immune recognition of tumor-associated mucin MUC1 is achieved by a fully synthetic aberrantly glycosylated MUC1 tripartite vaccine. Proceedings of the National Academy of Sciences of the United States of America, 109, 261–266.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  89. Goydos, J. S., Elder, E., Whiteside, T. L., Finn, O. J., & Lotze, M. T. (1996). A phase I trial of a synthetic mucin peptide vaccine. Induction of specific immune reactivity in patients with adenocarcinoma. Journal of Surgical Research, 63, 298–304.

    Article  CAS  PubMed  Google Scholar 

  90. Karanikas, V., Hwang, L. A., Pearson, J., Ong, C. S., Apostolopoulos, V., Vaughan, H., et al. (1997). Antibody and T cell responses of patients with adenocarcinoma immunized with mannan-MUC1 fusion protein. Journal of Clinical Investigation, 100, 2783–2792.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  91. Soares, M. M., Mehta, V., & Finn, O. J. (2001). Three different vaccines based on the 140-amino acid MUC1 peptide with seven tandemly repeated tumor-specific epitopes elicit distinct immune effector mechanisms in wild-type versus MUC1-transgenic mice with different potential for tumor rejection. Journal of Immunology, 166, 6555–6563.

    Article  CAS  Google Scholar 

  92. Von Mensdorff-Pouilly, S., Petrakou, E., Kenemans, P., van Uffelen, K., Verstraeten, A. A., Snijdewint, F. G., et al. (2000). Reactivity of natural and induced human antibodies to MUC1 mucin with MUC1 peptides and n-acetylgalactosamine (GalNAc) peptides. International Journal of Cancer, 86, 702–712.

    Article  Google Scholar 

  93. Dziadek, S., Griesinger, C., Kunz, H., & Reinscheid, U. M. (2006). Synthesis and structural model of an alpha (2,6)-sialyl-t glycosylated MUC1 eicosapeptide under physiological conditions. Chemistry, 12, 4981–4993.

    Article  CAS  PubMed  Google Scholar 

  94. Ninkovic, T., & Hanisch, F. G. (2007). O-glycosylated human MUC1 repeats are processed in vitro by immunoproteasomes. Journal of Immunology, 179, 2380–2388.

    Article  CAS  Google Scholar 

  95. Turner, M. S., Cohen, P. A., & Finn, O. J. (2007). Lack of effective MUC1 tumor antigen-specific immunity in MUC1-transgenic mice results from a Th/T regulatory cell imbalance that can be corrected by adoptive transfer of wild-type Th cells. Journal of Immunology, 178, 2787–2793.

    Article  CAS  Google Scholar 

  96. Beatty, P. L., Narayanan, S., Gariepy, J., Ranganathan, S., & Finn, O. J. (2010). Vaccine against MUC1 antigen expressed in inflammatory bowel disease and cancer lessens colonic inflammation and prevents progression to colitis-associated colon cancer. Cancer Prevention Research (Philadelphia), 3, 438–446.

    Article  CAS  Google Scholar 

  97. Ehre, C., Worthington, E. N., Liesman, R. M., Grubb, B. R., Barbier, D., O’Neal, W. K., et al. (2012). Overexpressing mouse model demonstrates the protective role of Muc5ac in the lungs. Proceedings of the National Academy of Sciences of the United States of America, 109, 16528–16533.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  98. Li, S., Intini, G., & Bobek, L. A. (2006). Modulation of MUC7 mucin expression by exogenous factors in airway cells in vitro and in vivo. American Journal of Respiratory Cell and Molecular Biology, 35, 95–102.

  99. Bobek, L. A., Tsai, H., Biesbrock, A. R., & Levine, M. J. (1993). Molecular cloning, sequence, and specificity of expression of the gene encoding the low molecular weight human salivary mucin (MUC7). Journal of Biological Chemistry, 268, 20563–20569.

    CAS  PubMed  Google Scholar 

  100. Bobek, L. A., Li, H., Rojstaczer, N., Jones, C., Gross, K. W., & Levine, M. J. (1998). Tissue-specific expression of human salivary mucin gene, MUC7, in transgenic mice. Transgenic Research, 7, 195–204.

    Article  CAS  PubMed  Google Scholar 

  101. Biesbrock, A. R., Bobek, L. A., & Levine, M. J. (1997). MUC7 gene expression and genetic polymorphism. Glycoconjugate Journal, 14, 415–422.

    Article  CAS  PubMed  Google Scholar 

  102. Fan, H., & Bobek, L. A. (2010). Regulation of human MUC7 mucin gene expression by cigarette smoke extract or cigarette smoke and Pseudomonas aeruginosa lipopolysaccharide in human airway epithelial cells and in MUC7 transgenic mice. Open Respiratory Medicine Journal, 4, 63–70.

    PubMed Central  CAS  PubMed  Google Scholar 

  103. Rachagani, S., Torres, M. P., Kumar, S., Haridas, D., Baine, M., Macha, M. A., et al. (2012). Mucin (Muc) expression during pancreatic cancer progression in spontaneous mouse model: potential implications for diagnosis and therapy. Journal of Hematology & Oncology, 5, 68.

    Article  CAS  Google Scholar 

  104. Tian, H., Zhou, Q., Lasonos, A., Spriggs DR. (2013). Overexpression of the carboxyl-terminus of MUC16 can accelerate the occurrence of phenotypes in p53 heterozygous mouse model. Cancer Research, 73(8 Suppl). doi:10.1158/1538-7445.AM2013-326.

  105. Reya, T., Morrison, S. J., Clarke, M. F., & Weissman, I. L. (2001). Stem cells, cancer, and cancer. Nature, 414(6859), 105–111.

    Article  CAS  PubMed  Google Scholar 

  106. Hikita, S. T., Kosik, K. S., Clegg, D. O., & Bamdad, C. (2008). MUC1* mediates the growth of human pluripotent stem cells. PLoS One. doi:10.1371/journal.pone.0003312.

    PubMed Central  PubMed  Google Scholar 

  107. Ponnusamy, M. P., & Batra, S. K. (2008). Ovarian cancer: emerging concept on cancer stem cells. Journal of Ovarian Research. doi:10.1186/1757-2215-1-4.

    PubMed Central  PubMed  Google Scholar 

  108. Ponnusamy, M. P., Seshacharyulu, P., Vaz, A., Dey, P., & Batra, S. K. (2011). MUC4 stabilizes HER2 expression and maintains the cancer stem cell population in ovarian cancer cells. Journal of Ovarian Research. doi:10.1186/1757-2215-4-7.

    PubMed Central  PubMed  Google Scholar 

  109. Sugiura, D., Denda Nagai, K., Takashima, M., Murakami, R., Nagai, S., Takeda, K., et al. (2012). Local effects of regulatory T cells in MUC1 transgenic mice potentiate growth of MUC1 expressing tumor cells in vivo.8 PLoS One. doi:10.1371/journal.pone.0044770.

  110. Tsai, C. J., Herrera-Goepfert, R., Tibshirani, R. J., Yang, S., Mohar, A., Guarner, J., et al. (2006). Changes of gene expression in gastric preneoplasia following Helicobacter pylori eradication therapy. Cancer Epidemiology, Biomarkers & Prevention, 15, 272–280.

    Article  CAS  Google Scholar 

  111. Shimamura, T., Ito, H., Shibahara, J., Watanabe, A., Hippo, Y., Taniguchi, H., et al. (2005). Overexpression of MUC13 is associated with intestinal-type gastric cancer. Cancer Science, 96, 265–273.

    Article  CAS  PubMed  Google Scholar 

  112. Munro, E. G., Jain, M., Oliva, E., Kamal, N., Lele, S. M., Lynch, M. P., et al. (2009). Upregulation of MUC4 in cervical squamous cell carcinoma: pathologic significance. International Journal of Gynecological Pathology, 28, 127–133.

    Article  PubMed Central  PubMed  Google Scholar 

  113. Shibahara, H., Tamada, S., Higashi, M., Goto, M., Batra, S. K., Hollingsworth, M. A., et al. (2004). MUC4 is a novel prognostic factor of intrahepatic cholangiocarcinoma-mass forming type. Hepatology, 39, 220–229.

    Article  CAS  PubMed  Google Scholar 

  114. Chung, M. H., Choi, J. Y., Lee, W. S., Kim, H. N., & Yoon, J. H. (2002). Compositional difference in middle ear effusion: mucous versus serous. Laryngoscope, 112, 152–155.

    Article  CAS  PubMed  Google Scholar 

  115. Yuta, A., Ali, M., Sabol, M., Gaumond, E., & Baraniuk, J. N. (1997). Mucoglycoprotein hypersecretion in allergic rhinitis and cystic fibrosis. American Journal of Physiology, 273, L1203–L1207.

    CAS  PubMed  Google Scholar 

  116. Vinall, L. E., King, M., Novelli, M., Green, C. A., Daniels, G., Hilkens, J., et al. (2002). Altered expression and allelic association of the hypervariable membrane mucin MUC1 in Helicobacter pylori gastritis. Gastroenterology, 123, 41–49.

    Article  CAS  PubMed  Google Scholar 

  117. Kirkbride, H. J., Bolscher, J. G., Nazmi, K., Vinall, L. E., Nash, M. W., Moss, F. M., et al. (2001). Genetic polymorphism of MUC7: allele frequencies and association with asthma. European Journal of Human Genetics, 9, 347–354.

    Article  CAS  PubMed  Google Scholar 

  118. Watson, A. M., Ngor, W. M., Gordish-Dressman, H., Freishtat, R. J., & Rose, M. C. (2009). MUC7 polymorphisms are associated with a decreased risk of a diagnosis of asthma in an African American population. Journal of Investigative Medicine, 57, 882–886.

    PubMed Central  CAS  PubMed  Google Scholar 

  119. Carrara, S., Cangi, M. G., Arcidiacono, P. G., Perri, F., Petrone, M. C., Mezzi, G., et al. (2011). Mucin expression pattern in pancreatic diseases: findings from EUS-guided fine-needle aspiration biopsies. American Journal of Gastroenterology, 106, 1359–1363.

    Article  CAS  PubMed  Google Scholar 

  120. Retz, M., Lehmann, J., Roder, C., Plotz, B., Harder, J., Eggers, J., et al. (1998). Differential mucin MUC7 gene expression in invasive bladder carcinoma in contrast to uniform MUC1 and MUC2 gene expression in both normal urothelium and bladder carcinoma. Cancer Research, 58, 5662–5666.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors on this work are supported, in part, by grants from the National Institutes of Health (TMEN U54 CA163120, EDRN UO1 CA111294, RO1 CA183459, SPORE P50 CA127297, RO1 CA78590, P20 GM103480, R21 CA155175, R21 CA156037, and RO3 CA167342).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Surinder K. Batra.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Joshi, S., Kumar, S., Bafna, S. et al. Genetically engineered mucin mouse models for inflammation and cancer. Cancer Metastasis Rev 34, 593–609 (2015). https://doi.org/10.1007/s10555-015-9549-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10555-015-9549-1

Keywords

Navigation