Skip to main content

Advertisement

Log in

Challenges and advances in mouse modeling for human pancreatic tumorigenesis and metastasis

  • Published:
Cancer and Metastasis Reviews Aims and scope Submit manuscript

Abstract

Pancreatic cancer is critical for developed countries, where its rate of diagnosis has been increasing steadily annually. In the past decade, the advances of pancreatic cancer research have not contributed to the decline in mortality rates from pancreatic cancer—the overall 5-year survival rate remains about 5% low. This number only underscores an obvious urgency for us to better understand the biological features of pancreatic carcinogenesis, to develop early detection methods, and to improve novel therapeutic treatments. To achieve these goals, animal modeling that faithfully recapitulates the whole process of human pancreatic cancer is central to making the advancements. In this review, we summarize the currently available animal models for pancreatic cancer and the advances in pancreatic cancer animal modeling. We compare and contrast the advantages and disadvantages of three major categories of these models: (1) carcinogen-induced; (2) xenograft and allograft; and (3) genetically engineered mouse models. We focus more on the genetically engineered mouse models, a category which has been rapidly expanded recently for their capacities to mimic human pancreatic cancer and metastasis, and highlight the combinations of these models with various newly developed strategies and cell-lineage labeling systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Hruban, R. H., et al. (2001). Pancreatic intraepithelial neoplasia: A new nomenclature and classification system for pancreatic duct lesions. The American Journal of Surgical Pathology, 25(5), 579–586.

    PubMed  CAS  Google Scholar 

  2. Takaori, K., et al. (2006). Current topics on precursors to pancreatic cancer. Advances in Medical Sciences, 51, 23–30.

    PubMed  CAS  Google Scholar 

  3. Adsay, N. V. (2003). The “new kid on the block”: Intraductal papillary mucinous neoplasms of the pancreas: Current concepts and controversies. Surgery, 133(5), 459–463.

    PubMed  Google Scholar 

  4. Hruban, R. H., Wilentz, R. E., & Kern, S. E. (2000). Genetic progression in the pancreatic ducts. American Journal of Pathology, 156(6), 1821–1825.

    PubMed  CAS  Google Scholar 

  5. Wilentz, R. E., Albores-Saavedra, J., & Hruban, R. H. (2000). Mucinous cystic neoplasms of the pancreas. Seminars in Diagnostic Pathology, 17(1), 31–42.

    PubMed  CAS  Google Scholar 

  6. Yachida, S., et al. (2010). Distant metastasis occurs late during the genetic evolution of pancreatic cancer. Nature, 467(7319), 1114–1117.

    PubMed  CAS  Google Scholar 

  7. Almoguera, C., et al. (1988). Most human carcinomas of the exocrine pancreas contain mutant c-K-ras genes. Cell, 53(4), 549–554.

    PubMed  CAS  Google Scholar 

  8. Caldas, C., et al. (1994). Frequent somatic mutations and homozygous deletions of the p16 (MTS1) gene in pancreatic adenocarcinoma. Nature Genetics, 8, 27–31.

    PubMed  CAS  Google Scholar 

  9. Schutte, M., et al. (1997). Abrogation of the Rb/p16 tumor-suppressive pathway in virtually all pancreatic carcinomas. Cancer Research, 57, 3126–3130.

    PubMed  CAS  Google Scholar 

  10. Redston, M. S., et al. (1994). p53 mutations in pancreatic carcinoma and evidence of common involvement of homocopolymer tracts in DNA microdeletions. Cancer Research, 54, 3025–3033.

    PubMed  CAS  Google Scholar 

  11. Pellegata, S., et al. (1994). K-ras and p53 gene mutations in pancreatic cancer: Ductal and nonductal tumors progress through different genetic lesions. Cancer Research, 54, 1556–1560.

    PubMed  CAS  Google Scholar 

  12. Hahn, S. A., et al. (1996). DPC4, a candidate tumor suppressor gene at human chromosome 18q21.1. Science, 271(5247), 350–353.

    PubMed  CAS  Google Scholar 

  13. Wilentz, R. E., et al. (2000). Loss of expression of Dpc4 in pancreatic intraepithelial neoplasia (PanIN): Evidence that DPC4 inactivation occurs late in neoplastic progression. Cancer Research, 60, 2002–2006.

    PubMed  CAS  Google Scholar 

  14. Su, G. H., & Kern, S. E. (2000). Molecular genetics of ductal pancreatic neoplasia. Curr Opin Gastroenterology, 16, 419–425.

    CAS  Google Scholar 

  15. Klimstra, D. S., & Longnecker, D. S. (1994). K-ras mutations in pancreatic ductal proliferative lesions. American Journal of Pathology, 145(6), 1547–1550.

    PubMed  CAS  Google Scholar 

  16. DiGiuseppe, J. A., et al. (1994). Overexpression of p53 protein in adenocarcinoma of the pancreas. American Journal of Clinical Pathology, 101(6), 684–688.

    PubMed  CAS  Google Scholar 

  17. Sato, N., et al. (2001). STK11/LKB1 Peutz-Jeghers gene inactivation in intraductal papillary–mucinous neoplasms of the pancreas. American Journal of Pathology, 159(6), 2017–2022.

    PubMed  CAS  Google Scholar 

  18. Sahin, F., et al. (2003). Loss of Stk11/Lkb1 expression in pancreatic and biliary neoplasms. Modern Pathology, 16(7), 686–691.

    PubMed  Google Scholar 

  19. Schonleben, F., et al. (2006). PIK3CA mutations in intraductal papillary mucinous neoplasm/carcinoma of the pancreas. Clinical Cancer Research, 12(12), 3851–3855.

    PubMed  Google Scholar 

  20. Schonleben, F., et al. (2007). BRAF and KRAS gene mutations in intraductal papillary mucinous neoplasm/carcinoma (IPMN/IPMC) of the pancreas. Cancer Letters, 249(2), 242–248.

    PubMed  Google Scholar 

  21. Corbett, T. H., et al. (1984). Induction and chemotherapeutic response of two transplantable ductal adenocarcinomas of the pancreas in C57BL/6 mice. Cancer Research, 44(2), 717–726.

    PubMed  CAS  Google Scholar 

  22. Zimmerman, J. A., et al. (1982). Pancreatic carcinoma induced by N-methyl-N′-nitrosourea in aged mice. Gerontology, 28(2), 114–120.

    PubMed  CAS  Google Scholar 

  23. Gingell, R., et al. (1976). Metabolism of the pancreatic carcinogens N-nitroso-bis(2-oxopropyl)amine and N-nitroso-bis(2-hydroxypropyl)amine in the Syrian hamster. Journal of the National Cancer Institute, 57(5), 1175–1178.

    PubMed  CAS  Google Scholar 

  24. Pour, P., et al. (1976). A further pancreatic carcinogen in Syrian golden hamsters: N-nitroso-bis(2-acetoxypropyl)amine. Cancer Letters, 1(4), 197–202.

    PubMed  CAS  Google Scholar 

  25. Pour, P., et al. (1975). Pancreatic neoplasms in an animal model: Morphological, biological, and comparative studies. Cancer, 36(2), 379–389.

    PubMed  CAS  Google Scholar 

  26. Roebuck, B. D., Baumgartner, K. J., & Thron, C. D. (1984). Characterization of two populations of pancreatic atypical acinar cell foci induced by azaserine in the rat. Laboratory Investigation, 50(2), 141–146.

    PubMed  CAS  Google Scholar 

  27. Roebuck, B. D., & Longnecker, D. S. (1977). Species and rat strain variation in pancreatic nodule induction by azaserine. Journal of the National Cancer Institute, 59(4), 1273–1277.

    PubMed  CAS  Google Scholar 

  28. Longnecker, D. S., & Curphey, T. J. (1975). Adenocarcinoma of the pancreas in azaserine-treated rats. Cancer Research, 35(8), 2249–2258.

    PubMed  CAS  Google Scholar 

  29. Osvaldt, A. B., et al. (2006). Pancreatic intraepithelial neoplasia and ductal adenocarcinoma induced by DMBA in mice. Surgery, 140(5), 803–809.

    PubMed  Google Scholar 

  30. Bax, J., et al. (1986). Adenosine triphosphatase, a new marker for the differentiation of putative precancerous foci induced in rat pancreas by azaserine. Carcinogenesis, 7(3), 457–462.

    PubMed  CAS  Google Scholar 

  31. Roebuck, B. D., Baumgartner, K. J., & Longnecker, D. S. (1987). Growth of pancreatic foci and development of pancreatic cancer with a single dose of azaserine in the rat. Carcinogenesis, 8(12), 1831–1835.

    PubMed  CAS  Google Scholar 

  32. Woutersen, R. A., van Garderen-Hoetmer, A., & Longnecker, D. S. (1987). Characterization of a 4-month protocol for the quantitation of BOP-induced lesions in hamster pancreas and its application in studying the effect of dietary fat. Carcinogenesis, 8(6), 833–837.

    PubMed  CAS  Google Scholar 

  33. Mizumoto, K., et al. (1989). Cycles of repeated augmentation pressure in rapid production of pancreatic and cholangiocellular carcinomas in hamsters initiated with N-nitrosobis(2-oxopropyl)amine. Carcinogenesis, 10(8), 1457–1459.

    PubMed  CAS  Google Scholar 

  34. Meijers, M., et al. (1989). Histogenesis of early preneoplastic lesions induced by N-nitrosobis(2-oxopropyl)amine in exocrine pancreas of hamsters. International Journal of Pancreatology, 4(2), 127–137.

    PubMed  CAS  Google Scholar 

  35. Kilian, M., et al. (2006). Matrix metalloproteinase inhibitor RO 28–2653 decreases liver metastasis by reduction of MMP-2 and MMP-9 concentration in BOP-induced ductal pancreatic cancer in Syrian hamsters: Inhibition of matrix metalloproteinases in pancreatic cancer. Prostaglandins, Leukotrienes, and Essential Fatty Acids, 75(6), 429–434.

    PubMed  CAS  Google Scholar 

  36. Kubozoe, T., et al. (2001). Absence of beta-catenin gene mutations in pancreatic duct lesions induced by N-nitrosobis(2-oxopropyl)amine in hamsters. Cancer Letters, 168(1), 1–6.

    PubMed  CAS  Google Scholar 

  37. Kokkinakis, D. M., & Scarpelli, D. G. (1989). DNA alkylation in the hamster induced by two pancreatic carcinogens. Cancer Research, 49(12), 3184–3189.

    PubMed  CAS  Google Scholar 

  38. Mangino, M. M., Scarpelli, D. G., & Kokkinakis, D. M. (1990). Metabolism and activation of the pancreatic carcinogen N-nitrosobis(2-oxopropyl)amine by isolated hepatocytes and pancreatic cells of the Syrian hamster. Carcinogenesis, 11(4), 625–631.

    PubMed  CAS  Google Scholar 

  39. Sugio, K., et al. (1996). High yields of K-ras mutations in intraductal papillary mucinous tumors and invasive adenocarcinomas induced by N-nitroso(2-hydroxypropyl)(2-oxopropyl)amine in the pancreas of female Syrian hamsters. Carcinogenesis, 17(2), 303–309.

    PubMed  CAS  Google Scholar 

  40. Longnecker, D. S., et al. (1985). Induction of pancreatic carcinomas in rats with N-nitroso(2-hydroxypropyl)(2-oxopropyl)amine: Histopathology. Journal of the National Cancer Institute, 74(1), 209–217.

    PubMed  CAS  Google Scholar 

  41. Bockman, D. E., et al. (1978). Origin of tubular complexes developing during induction of pancreatic adenocarcinoma by 7,12-dimethylbenz(a)anthracene. American Journal of Pathology, 90(3), 645–658.

    PubMed  CAS  Google Scholar 

  42. Rivera, J. A., et al. (1997). A rat model of pancreatic ductal adenocarcinoma: Targeting chemical carcinogens. Surgery, 122(1), 82–90.

    PubMed  CAS  Google Scholar 

  43. Z’Graggen, K., et al. (2001). Promoting effect of a high-fat/high-protein diet in DMBA-induced ductal pancreatic cancer in rats. Annals of Surgery, 233(5), 688–695.

    PubMed  Google Scholar 

  44. Wendt, L. R., et al. (2007). Pancreatic intraepithelial neoplasia and ductal adenocarcinoma induced by DMBA in mice: Effects of alcohol and caffeine. Acta Cirúrgica Brasileira, 22(3), 202–209.

    PubMed  Google Scholar 

  45. Kimura, K., et al. (2007). Activation of Notch signaling in tumorigenesis of experimental pancreatic cancer induced by dimethylbenzanthracene in mice. Cancer Science, 98(2), 155–162.

    PubMed  CAS  Google Scholar 

  46. Pour, P. M., & Rivenson, A. (1989). Induction of a mixed ductal-squamous-islet cell carcinoma in a rat treated with a tobacco-specific carcinogen. American Journal of Pathology, 134(3), 627–631.

    PubMed  CAS  Google Scholar 

  47. Rivenson, A., et al. (1988). Induction of lung and exocrine pancreas tumors in F344 rats by tobacco-specific and Areca-derived N-nitrosamines. Cancer Research, 48(23), 6912–6917.

    PubMed  CAS  Google Scholar 

  48. Schuller, H. M., et al. (1993). Transplacental induction of pancreas tumors in hamsters by ethanol and the tobacco-specific nitrosamine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone. Cancer Research, 53(11), 2498–2501.

    PubMed  CAS  Google Scholar 

  49. Van Benthem, J., et al. (1994). Immunocytochemical identification of DNA adducts, O6-methylguanine and 7-methylguanine, in respiratory and other tissues of rat, mouse and Syrian hamster exposed to 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone. Carcinogenesis, 15(9), 2023–2029.

    PubMed  CAS  Google Scholar 

  50. Hayashi, Y., et al. (1987). Induction of cells with acinar cell phenotype including presence of intracellular amylase. Treatment with 12-O-tetradecanoyl-phorbol-13-acetate in a neoplastic human salivary intercalated duct cell line grown in athymic nude mice. Cancer, 60(5), 1000–1008.

    PubMed  CAS  Google Scholar 

  51. Reddy, J. K., & Rao, M. S. (1975). Pancreatic adenocarcinoma in inbred guinea pigs induced by n-methyl-N-nitrosourea. Cancer Research, 35(8), 2269–2277.

    PubMed  CAS  Google Scholar 

  52. Rao, M. S., & Reddy, J. K. (1980). Histogenesis of pseudo-ductular changes induced in the pancreas of guinea pigs treated with N-methyl-N-nitrosourea. Carcinogenesis, 1(12), 1027–1037.

    PubMed  CAS  Google Scholar 

  53. Chang, K. W., et al. (1994). Genomic p53 mutation in a chemically induced hamster pancreatic ductal adenocarcinoma. Cancer Research, 54(14), 3878–3883.

    PubMed  CAS  Google Scholar 

  54. Al-Wadei, H. A., & Schuller, H. M. (2009). Nicotinic receptor-associated modulation of stimulatory and inhibitory neurotransmitters in NNK-induced adenocarcinoma of the lungs and pancreas. The Journal of Pathology, 218(4), 437–445.

    PubMed  CAS  Google Scholar 

  55. Longnecker, D. S. (1991). Hormones and pancreatic cancer. International Journal of Pancreatology, 9, 81–86.

    PubMed  CAS  Google Scholar 

  56. Lhoste, E. F., & Longnecker, D. S. (1987). Effect of bombesin and caerulein on early stages of carcinogenesis induced by azaserine in the rat pancreas. Cancer Research, 47(12), 3273–3277.

    PubMed  CAS  Google Scholar 

  57. McGuinness, E. E., Morgan, R. G., & Wormsley, K. G. (1987). Fate of pancreatic nodules induced by raw soya flour in rats. Gut, 28(Suppl), 207–212.

    PubMed  Google Scholar 

  58. Al-Wadei, H. A., Al-Wadei, M. H., & Schuller, H. M. (2009). Prevention of pancreatic cancer by the beta-blocker propranolol. Anti-Cancer Drugs, 20(6), 477–482.

    PubMed  CAS  Google Scholar 

  59. Valentich, M. A., et al. (2006). Effect of the co-administration of phenobarbital, quercetin and mancozeb on nitrosomethylurea-induced pancreatic tumors in rats. Food and Chemical Toxicology, 44(12), 2101–2105.

    PubMed  CAS  Google Scholar 

  60. Ouyang, N., et al. (2006). Nitric oxide-donating aspirin prevents pancreatic cancer in a hamster tumor model. Cancer Research, 66(8), 4503–4511.

    PubMed  CAS  Google Scholar 

  61. Kuroiwa, Y., et al. (2006). Protective effects of benzyl isothiocyanate and sulforaphane but not resveratrol against initiation of pancreatic carcinogenesis in hamsters. Cancer Letters, 241(2), 275–280.

    PubMed  CAS  Google Scholar 

  62. Heukamp, I., et al. (2005). Effects of the antioxidative vitamins A, C and E on liver metastasis and intrametastatic lipid peroxidation in BOP-induced pancreatic cancer in Syrian hamsters. Pancreatology, 5(4–5), 403–409.

    PubMed  CAS  Google Scholar 

  63. Schuller, H. M., et al. (2002). The cyclooxygenase inhibitor ibuprofen and the FLAP inhibitor MK886 inhibit pancreatic carcinogenesis induced in hamsters by transplacental exposure to ethanol and the tobacco carcinogen NNK. Journal of Cancer Research and Clinical Oncology, 128(10), 525–532.

    PubMed  CAS  Google Scholar 

  64. Strouch, M. J., et al. (2011). A high omega-3 fatty acid diet mitigates murine pancreatic precancer development. Journal of Surgical Research, 165(1), 75–81.

    PubMed  CAS  Google Scholar 

  65. Gray, M. J., et al. (2005). Neuropilin-1 suppresses tumorigenic properties in a human pancreatic adenocarcinoma cell line lacking neuropilin-1 coreceptors. Cancer Research, 65(9), 3664–3670.

    PubMed  CAS  Google Scholar 

  66. Bosma, M. J., & Carroll, A. M. (1991). The SCID mouse mutant: Definition, characterization, and potential uses. Annual Review of Immunology, 9, 323–350.

    PubMed  CAS  Google Scholar 

  67. Ito, M., et al. (2002). NOD/SCID/gamma(c)(null) mouse: An excellent recipient mouse model for engraftment of human cells. Blood, 100(9), 3175–3182.

    PubMed  CAS  Google Scholar 

  68. Quintana, E., et al. (2008). Efficient tumour formation by single human melanoma cells. Nature, 456(7222), 593–598.

    PubMed  CAS  Google Scholar 

  69. Hafeez, B.B., et al., Plumbagin, a plant derived natural agent inhibits the growth of pancreatic cancer cells in in vitro and in vivo via targeting EGFR, Stat3 and NF-kappaB signaling pathways. Int J Cancer, 2012; 131:2175-2186.

    Google Scholar 

  70. Girgis, M. D., et al. (2011). Targeting CEA in pancreas cancer xenografts with a mutated scFv-Fc antibody fragment. EJNMMI Research, 1(1), 24.

    PubMed  Google Scholar 

  71. Aurisicchio, L., et al., Novel anti-ErbB3 monoclonal antibodies show therapeutic efficacy in xenografted and spontaneous mouse tumors. J Cell Physiol, 2012;227:3381-3388.

    Google Scholar 

  72. Nakamura, M., et al., Targeting the hedgehog signaling pathway with interacting peptides to Patched-1. J Gastroenterol, 2012; 47:452-460.

    Google Scholar 

  73. Li, H., et al. (2011). STAT3 knockdown reduces pancreatic cancer cell invasiveness and matrix metalloproteinase-7 expression in nude mice. PLoS One, 6(10), e25941.

    PubMed  CAS  Google Scholar 

  74. Fidler, I. J. (1986). Rationale and methods for the use of nude mice to study the biology and therapy of human cancer metastasis. Cancer Metastasis Reviews, 5(1), 29–49.

    PubMed  CAS  Google Scholar 

  75. DeRosier, L. C., et al. (2006). Treatment with gemcitabine and TRA-8 anti-death receptor-5 mAb reduces pancreatic adenocarcinoma cell viability in vitro and growth in vivo. Journal of Gastrointestinal Surgery, 10(9), 1291–1300. discussion 1300.

    PubMed  Google Scholar 

  76. Capella, G., et al. (1999). Orthotopic models of human pancreatic cancer. Annals of the New York Academy of Sciences, 880, 103–109.

    PubMed  CAS  Google Scholar 

  77. Rubio-Viqueira, B., et al. (2006). An in vivo platform for translational drug development in pancreatic cancer. Clinical Cancer Research, 12(15), 4652–4661.

    PubMed  CAS  Google Scholar 

  78. Trevino, J. G., et al. (2006). Inhibition of SRC expression and activity inhibits tumor progression and metastasis of human pancreatic adenocarcinoma cells in an orthotopic nude mouse model. American Journal of Pathology, 168(3), 962–972.

    PubMed  CAS  Google Scholar 

  79. Li, C., et al. (2007). Identification of pancreatic cancer stem cells. Cancer Research, 67(3), 1030–1037.

    PubMed  CAS  Google Scholar 

  80. Derosier, L. C., et al. (2007). TRA-8 anti-DR5 monoclonal antibody and gemcitabine induce apoptosis and inhibit radiologically validated orthotopic pancreatic tumor growth. Molecular Cancer Therapeutics, 6(12 Pt 1), 3198–3207.

    PubMed  CAS  Google Scholar 

  81. Jimeno, A., et al. (2009). A direct pancreatic cancer xenograft model as a platform for cancer stem cell therapeutic development. Molecular Cancer Therapeutics, 8(2), 310–314.

    PubMed  CAS  Google Scholar 

  82. Fogh, J., et al. (1980). Thirty-four lines of six human tumor categories established in nude mice. Journal of the National Cancer Institute, 64(4), 745–751.

    PubMed  CAS  Google Scholar 

  83. Alisauskus, R., Wong, G. Y., & Gold, D. V. (1995). Initial studies of monoclonal antibody PAM4 targeting to xenografted orthotopic pancreatic cancer. Cancer Research, 55(23 Suppl), 5743s–5748s.

    PubMed  CAS  Google Scholar 

  84. Killion, J. J., Radinsky, R., & Fidler, I. J. (1998). Orthotopic models are necessary to predict therapy of transplantable tumors in mice. Cancer Metastasis Reviews, 17(3), 279–284.

    PubMed  Google Scholar 

  85. Loukopoulos, P., et al. (2004). Orthotopic transplantation models of pancreatic adenocarcinoma derived from cell lines and primary tumors and displaying varying metastatic activity. Pancreas, 29(3), 193–203.

    PubMed  CAS  Google Scholar 

  86. Huynh, A. S., et al. (2011). Development of an orthotopic human pancreatic cancer xenograft model using ultrasound guided injection of cells. PLoS One, 6(5), e20330.

    PubMed  CAS  Google Scholar 

  87. DeRosier, L. C., et al. (2007). Combination treatment with TRA-8 anti death receptor 5 antibody and CPT-11 induces tumor regression in an orthotopic model of pancreatic cancer. Clinical Cancer Research, 13(18 Pt 2), 5535s–5543s.

    PubMed  CAS  Google Scholar 

  88. Partecke, I. L., et al. (2011). In vivo imaging of pancreatic tumours and liver metastases using 7 Tesla MRI in a murine orthotopic pancreatic cancer model and a liver metastases model. BMC Cancer, 11, 40.

    PubMed  Google Scholar 

  89. Cheng, L., et al. (1996). Use of green fluorescent protein variants to monitor gene transfer and expression in mammalian cells. Nature Biotechnology, 14(5), 606–609.

    PubMed  CAS  Google Scholar 

  90. Chalfie, M., et al. (1994). Green fluorescent protein as a marker for gene expression. Science, 263(5148), 802–805.

    PubMed  CAS  Google Scholar 

  91. Astoul, P., et al. (1994). A “patient-like” nude mouse model of parietal pleural human lung adenocarcinoma. Anticancer Research, 14(1A), 85–91.

    PubMed  CAS  Google Scholar 

  92. Budinger, T. F., Benaron, D. A., & Koretsky, A. P. (1999). Imaging transgenic animals. Annual Review of Biomedical Engineering, 1, 611–648.

    PubMed  CAS  Google Scholar 

  93. Hoffman, R. M. (2005). The multiple uses of fluorescent proteins to visualize cancer in vivo. Nature Reviews. Cancer, 5(10), 796–806.

    PubMed  CAS  Google Scholar 

  94. Bouvet, M., et al. (2000). Chronologically-specific metastatic targeting of human pancreatic tumors in orthotopic models. Clinical & Experimental Metastasis, 18(3), 213–218.

    CAS  Google Scholar 

  95. Bouvet, M., et al. (2002). Real-time optical imaging of primary tumor growth and multiple metastatic events in a pancreatic cancer orthotopic model. Cancer Research, 62(5), 1534–1540.

    PubMed  CAS  Google Scholar 

  96. Katz, M. H., et al. (2003). A novel red fluorescent protein orthotopic pancreatic cancer model for the preclinical evaluation of chemotherapeutics. Journal of Surgical Research, 113(1), 151–160.

    PubMed  CAS  Google Scholar 

  97. Katz, M. H., et al. (2004). An imageable highly metastatic orthotopic red fluorescent protein model of pancreatic cancer. Clinical & Experimental Metastasis, 21(1), 7–12.

    CAS  Google Scholar 

  98. Bouvet, M., et al. (2005). High correlation of whole-body red fluorescent protein imaging and magnetic resonance imaging on an orthotopic model of pancreatic cancer. Cancer Research, 65(21), 9829–9833.

    PubMed  CAS  Google Scholar 

  99. Katz, M. H., et al. (2003). Selective antimetastatic activity of cytosine analog CS-682 in a red fluorescent protein orthotopic model of pancreatic cancer. Cancer Research, 63(17), 5521–5525.

    PubMed  CAS  Google Scholar 

  100. Katz, M. H., et al. (2004). Survival efficacy of adjuvant cytosine-analogue CS-682 in a fluorescent orthotopic model of human pancreatic cancer. Cancer Research, 64(5), 1828–1833.

    PubMed  CAS  Google Scholar 

  101. Amoh, Y., et al. (2006). Dual-color imaging of nascent blood vessels vascularizing pancreatic cancer in an orthotopic model demonstrates antiangiogenesis efficacy of gemcitabine. Journal of Surgical Research, 132(2), 164–169.

    PubMed  CAS  Google Scholar 

  102. Amoh, Y., et al. (2006). Visualization of nascent tumor angiogenesis in lung and liver metastasis by differential dual-color fluorescence imaging in nestin-linked-GFP mice. Clinical & Experimental Metastasis, 23(7–8), 315–322.

    Google Scholar 

  103. Amoh, Y., et al. (2006). Dual-color imaging of nascent angiogenesis and its inhibition in liver metastases of pancreatic cancer. Anticancer Research, 26(5A), 3237–3242.

    PubMed  CAS  Google Scholar 

  104. Sweeney, T. J., et al. (1999). Visualizing the kinetics of tumor-cell clearance in living animals. Proc Natl Acad Sci USA, 96(21), 12044–12049.

    PubMed  CAS  Google Scholar 

  105. Kunnumakkara, A.B., et al., Zyflamend suppresses growth and sensitizes human pancreatic tumors to gemcitabine in an orthotopic mouse model through modulation of multiple targets. Int J Cancer 2012; 131:E292-E303.

    Google Scholar 

  106. Hingorani, S. R., et al. (2003). Preinvasive and invasive ductal pancreatic cancer and its early detection in the mouse. Cancer Cell, 4(6), 437–450.

    PubMed  CAS  Google Scholar 

  107. Hingorani, S. R., et al. (2005). Trp53R172H and KrasG12D cooperate to promote chromosomal instability and widely metastatic pancreatic ductal adenocarcinoma in mice. Cancer Cell, 7(5), 469–483.

    PubMed  CAS  Google Scholar 

  108. Tuveson, D. A., & Hingorani, S. R. (2005). Ductal pancreatic cancer in humans and mice. Cold Spring Harbor Symposia on Quantitative Biology, 70, 65–72.

    PubMed  CAS  Google Scholar 

  109. Tseng, W.W., et al., Development of an orthotopic model of invasive pancreatic cancer in an immunocompetent murine host. Clin Cancer Res. 16(14): p. 3684–95.

  110. Partecke, L. I., et al. (2011). A syngeneic orthotopic murine model of pancreatic adenocarcinoma in the C57/BL6 mouse using the Panc02 and 6606PDA cell lines. European Surgical Research, 47(2), 98–107.

    PubMed  CAS  Google Scholar 

  111. Wang, B., et al. (2001). A novel, clinically relevant animal model of metastatic pancreatic adenocarcinoma biology and therapy. International Journal of Gastrointestinal Cancer, 29(1), 37–46.

    PubMed  Google Scholar 

  112. Tseng, W. W., et al. (2010). Development of an orthotopic model of invasive pancreatic cancer in an immunocompetent murine host. Clinical Cancer Research, 16(14), 3684–3695.

    PubMed  CAS  Google Scholar 

  113. Qiu, W., et al. (2011). Disruption of p16 and activation of Kras in pancreas increase ductal adenocarcinoma formation and metastasis in vivo. Oncotarget, 2(11), 862–873.

    PubMed  Google Scholar 

  114. Chu, Q.D. and R.H. Kim, Immunocompetent orthotopic pancreatic cancer murine model: A step in the right direction. J Surg Res, 2011 [Epub ahead of print]

  115. Brembeck, F. H., et al. (2003). The mutant K-ras oncogene causes pancreatic periductal lymphocytic infiltration and gastric mucous neck cell hyperplasia in transgenic mice. Cancer Research, 63(9), 2005–2009.

    PubMed  CAS  Google Scholar 

  116. Jhappan, C., et al. (1990). TGF alpha overexpression in transgenic mice induces liver neoplasia and abnormal development of the mammary gland and pancreas. Cell, 61(6), 1137–1146.

    PubMed  CAS  Google Scholar 

  117. Pujal, J., et al. (2009). Keratin 7 promoter selectively targets transgene expression to normal and neoplastic pancreatic ductal cells in vitro and in vivo. The FASEB Journal, 23(5), 1366–1375.

    CAS  Google Scholar 

  118. Offield, M. F., et al. (1996). PDX-1 is required for pancreatic outgrowth and differentiation of the rostral duodenum. Development, 122(3), 983–995.

    PubMed  CAS  Google Scholar 

  119. Aichler, M., et al. (2012). Origin of pancreatic ductal adenocarcinoma from atypical flat lesions: A comparative study in transgenic mice and human tissues. The Journal of Pathology, 226(5), 723–734.

    Google Scholar 

  120. Zhu, L., et al. (2007). Acinar cells contribute to the molecular heterogeneity of pancreatic intraepithelial neoplasia. American Journal of Pathology, 171(1), 263–273.

    PubMed  CAS  Google Scholar 

  121. Means, A. L., et al. (2005). Pancreatic epithelial plasticity mediated by acinar cell transdifferentiation and generation of nestin-positive intermediates. Development, 132(16), 3767–3776.

    PubMed  CAS  Google Scholar 

  122. Hruban, R. H., et al. (2006). Pathology of genetically engineered mouse models of pancreatic exocrine cancer: Consensus report and recommendations. Cancer Research, 66(1), 95–106.

    PubMed  CAS  Google Scholar 

  123. Ornitz, D. M., et al. (1987). Pancreatic neoplasia induced by SV40 T-antigen expression in acinar cells of transgenic mice. Science, 238(4824), 188–193.

    PubMed  CAS  Google Scholar 

  124. Quaife, C. J., et al. (1987). Pancreatic neoplasia induced by ras expression in acinar cells of transgenic mice. Cell, 48(6), 1023–1034.

    PubMed  CAS  Google Scholar 

  125. Lewis, B. C., Klimstra, D. S., & Varmus, H. E. (2003). The c-myc and PyMT oncogenes induce different tumor types in a somatic mouse model for pancreatic cancer. Genes & Development, 17(24), 3127–3138.

    CAS  Google Scholar 

  126. Sandgren, E. P., et al. (1991). Pancreatic tumor pathogenesis reflects the causative genetic lesion. Proc Natl Acad Sci USA, 88(1), 93–97.

    PubMed  CAS  Google Scholar 

  127. Liao, D. J., et al. (2006). Characterization of pancreatic lesions from MT-tgf alpha, Ela-myc and MT-tgf alpha/Ela-myc single and double transgenic mice. J Carcinog, 5, 19.

    PubMed  Google Scholar 

  128. Grippo, P.J. and E.P. Sandgren. Acinar-to-ductal metaplasia accompanies c-myc-induced exocrine pancreatic cancer progression in transgenic rodents. Int J Cancer, 2012;131:1243-1248.

    Google Scholar 

  129. Grippo, P. J., et al. (2003). Preinvasive pancreatic neoplasia of ductal phenotype induced by acinar cell targeting of mutant Kras in transgenic mice. Cancer Research, 63(9), 2016–2019.

    PubMed  CAS  Google Scholar 

  130. Jones, S., et al. (2008). Core signaling pathways in human pancreatic cancers revealed by global genomic analyses. Science, 321(5897), 1801–1806.

    PubMed  CAS  Google Scholar 

  131. Thayer, S. P., et al. (2003). Hedgehog is an early and late mediator of pancreatic cancer tumorigenesis. Nature, 425(6960), 851–856.

    PubMed  CAS  Google Scholar 

  132. Pasca di Magliano, M. (2006). Hedgehog/Ras interactions regulate early stages of pancreatic cancer. Genes & Development, 20(22), 3161–3173.

    CAS  Google Scholar 

  133. Sandgren, E. P., et al. (1990). Overexpression of TGF alpha in transgenic mice: Induction of epithelial hyperplasia, pancreatic metaplasia, and carcinoma of the breast. Cell, 61(6), 1121–1135.

    PubMed  CAS  Google Scholar 

  134. Schmid, R. M., et al. (1999). Acinar-ductal-carcinoma sequence in transforming growth factor-alpha transgenic mice. Annals of the New York Academy of Sciences, 880, 219–230.

    PubMed  CAS  Google Scholar 

  135. Liao, D. J., et al. (2000). Cell cycle basis for the onset and progression of c-Myc-induced, TGFalpha-enhanced mouse mammary gland carcinogenesis. Oncogene, 19(10), 1307–1317.

    PubMed  CAS  Google Scholar 

  136. Thorgeirsson, S. S., Factor, V. M., & Snyderwine, E. G. (2000). Transgenic mouse models in carcinogenesis research and testing. Toxicology Letters, 112–113, 553–555.

    PubMed  Google Scholar 

  137. Malka, D., et al. (2002). Risk of pancreatic adenocarcinoma in chronic pancreatitis. Gut, 51(6), 849–852.

    PubMed  CAS  Google Scholar 

  138. Norman, J. G., et al. (1996). Transgenic animals demonstrate a role for the IL-1 receptor in regulating IL-1beta gene expression at steady-state and during the systemic stress induced by acute pancreatitis. Journal of Surgical Research, 63(1), 231–236.

    PubMed  CAS  Google Scholar 

  139. Marrache, F., et al. (2008). Overexpression of interleukin-1beta in the murine pancreas results in chronic pancreatitis. Gastroenterology, 135(4), 1277–1287.

    PubMed  CAS  Google Scholar 

  140. Yip-Schneider, M. T., et al. (2000). Cyclooxygenase-2 expression in human pancreatic adenocarcinomas. Carcinogenesis, 21(2), 139–146.

    PubMed  CAS  Google Scholar 

  141. Muller-Decker, K., et al. (2006). Preinvasive duct-derived neoplasms in pancreas of keratin 5-promoter cyclooxygenase-2 transgenic mice. Gastroenterology, 130(7), 2165–2178.

    PubMed  Google Scholar 

  142. Neufang, G., et al. (2001). Abnormal differentiation of epidermis in transgenic mice constitutively expressing cyclooxygenase-2 in skin. Proc Natl Acad Sci USA, 98(13), 7629–7634.

    PubMed  CAS  Google Scholar 

  143. Colby, J. K., et al. (2008). Progressive metaplastic and dysplastic changes in mouse pancreas induced by cyclooxygenase-2 overexpression. Neoplasia, 10(8), 782–796.

    PubMed  CAS  Google Scholar 

  144. Tang, C., Biemond, I., & Lamers, C. B. (1996). Cholecystokinin receptors in human pancreas and gallbladder muscle: A comparative study. Gastroenterology, 111(6), 1621–1626.

    PubMed  CAS  Google Scholar 

  145. Saillan-Barreau, C., et al. (1998). Transgenic CCK-B/gastrin receptor mediates murine exocrine pancreatic secretion. Gastroenterology, 115(4), 988–996.

    PubMed  CAS  Google Scholar 

  146. Mathieu, A., et al. (2005). Transgenic expression of CCK2 receptors sensitizes murine pancreatic acinar cells to carcinogen-induced preneoplastic lesions formation. International Journal of Cancer, 115(1), 46–54.

    CAS  Google Scholar 

  147. Goggins, M., et al. (1998). Genetic alterations of the transforming growth factor beta receptor genes in pancreatic and biliary adenocarcinomas. Cancer Research, 58, 5329–5332.

    PubMed  CAS  Google Scholar 

  148. Kuang, C., et al. (2006). In vivo disruption of TGF-beta signaling by Smad7 leads to premalignant ductal lesions in the pancreas. Proc Natl Acad Sci USA, 103(6), 1858–1863.

    PubMed  CAS  Google Scholar 

  149. Izeradjene, K., et al. (2007). Kras(G12D) and Smad4/Dpc4 haploinsufficiency cooperate to induce mucinous cystic neoplasms and invasive adenocarcinoma of the pancreas. Cancer Cell, 11(3), 229–243.

    PubMed  CAS  Google Scholar 

  150. Wagner, M., et al. (1998). Malignant transformation of duct-like cells originating from acini in transforming growth factor transgenic mice. Gastroenterology, 115(5), 1254–1262.

    PubMed  CAS  Google Scholar 

  151. Glasner, S., Memoli, V., & Longnecker, D. S. (1992). Characterization of the ELSV transgenic mouse model of pancreatic carcinoma. Histologic type of large and small tumors. American Journal of Pathology, 140(5), 1237–1245.

    PubMed  CAS  Google Scholar 

  152. Bell, R. H., Jr., Memol, V. A., & Longnecker, D. S. (1990). Hyperplasia and tumors of the islets of Langerhans in mice bearing an elastase I-SV40 T-antigen fusion gene. Carcinogenesis, 11(8), 1393–1398.

    PubMed  CAS  Google Scholar 

  153. Schaeffer, B. K., Terhune, P. G., & Longnecker, D. S. (1994). Pancreatic carcinomas of acinar and mixed acinar/ductal phenotypes in Ela-1-myc transgenic mice do not contain c-K-ras mutations. American Journal of Pathology, 145(3), 696–701.

    PubMed  CAS  Google Scholar 

  154. Efrat, S., et al. (1988). Beta-cell lines derived from transgenic mice expressing a hybrid insulin gene-oncogene. Proc Natl Acad Sci USA, 85(23), 9037–9041.

    PubMed  CAS  Google Scholar 

  155. Bottinger, E. P., et al. (1997). Expression of a dominant-negative mutant TGF-beta type II receptor in transgenic mice reveals essential roles for TGF-beta in regulation of growth and differentiation in the exocrine pancreas. EMBO Journal, 16(10), 2621–2633.

    PubMed  CAS  Google Scholar 

  156. Yamaoka, T., et al. (2000). Diabetes and pancreatic tumours in transgenic mice expressing Pa x 6. Diabetologia, 43(3), 332–339.

    PubMed  CAS  Google Scholar 

  157. Wagner, M., et al. (2001). A murine tumor progression model for pancreatic cancer recapitulating the genetic alterations of the human disease. Genes & Development, 15(3), 286–293.

    CAS  Google Scholar 

  158. Schreiner, B., et al. (2003). Pattern of secondary genomic changes in pancreatic tumors of Tgf alpha/Trp53+/− transgenic mice. Genes, Chromosomes & Cancer, 38(3), 240–248.

    CAS  Google Scholar 

  159. Bardeesy, N., et al. (2002). Obligate roles for p16(Ink4a) and p19(Arf)-p53 in the suppression of murine pancreatic neoplasia. Molecular and Cellular Biology, 22(2), 635–643.

    PubMed  CAS  Google Scholar 

  160. Adrian, K., et al. (2009). Tgfbr1 haploinsufficiency inhibits the development of murine mutant Kras-induced pancreatic precancer. Cancer Research, 69(24), 9169–9174.

    PubMed  CAS  Google Scholar 

  161. Grippo, P.J., et al., Concurrent PEDF deficiency and Kras mutation induce invasive pancreatic cancer and adipose-rich stroma in mice. Gut, 2012;61:1454-1464.

    Google Scholar 

  162. Krantz, S. B., et al. (2011). MT1-MMP cooperates with Kras(G12D) to promote pancreatic fibrosis through increased TGF-beta signaling. Molecular Cancer Research, 9(10), 1294–1304.

    PubMed  CAS  Google Scholar 

  163. Sandgren, E. P., et al. (1993). Transforming growth factor alpha dramatically enhances oncogene-induced carcinogenesis in transgenic mouse pancreas and liver. Molecular and Cellular Biology, 13(1), 320–330.

    PubMed  CAS  Google Scholar 

  164. Fisher, G. H., et al. (1999). Development of a flexible and specific gene delivery system for production of murine tumor models. Oncogene, 18(38), 5253–5260.

    PubMed  CAS  Google Scholar 

  165. Morton, J. P., et al. (2008). Trp53 deletion stimulates the formation of metastatic pancreatic tumors. American Journal of Pathology, 172(4), 1081–1087.

    PubMed  Google Scholar 

  166. Song, S. Y., et al. (1999). Expansion of Pdx1-expressing pancreatic epithelium and islet neogenesis in transgenic mice overexpressing transforming growth factor alpha. Gastroenterology, 117(6), 1416–1426.

    PubMed  CAS  Google Scholar 

  167. Greten, F. R., et al. (2001). TGF alpha transgenic mice. A model of pancreatic cancer development. Pancreatology, 1(4), 363–368.

    PubMed  CAS  Google Scholar 

  168. Siveke, J. T., et al. (2007). Concomitant pancreatic activation of Kras(G12D) and Tgfa results in cystic papillary neoplasms reminiscent of human IPMN. Cancer Cell, 12(3), 266–279.

    PubMed  CAS  Google Scholar 

  169. Schutte, M., et al. (1996). DPC4 gene in various tumor types. Cancer Research, 56(11), 2527–2530.

    PubMed  CAS  Google Scholar 

  170. Bardeesy, N., et al. (2006). Smad4 is dispensable for normal pancreas development yet critical in progression and tumor biology of pancreas cancer. Genes & Development, 20(22), 3130–3146.

    CAS  Google Scholar 

  171. Ijichi, H., et al. (2006). Aggressive pancreatic ductal adenocarcinoma in mice caused by pancreas-specific blockade of transforming growth factor-beta signaling in cooperation with active Kras expression. Genes & Development, 20(22), 3147–3160.

    CAS  Google Scholar 

  172. Kojima, K., et al. (2007). Inactivation of Smad4 accelerates Kras(G12D)-mediated pancreatic neoplasia. Cancer Research, 67(17), 8121–8130.

    PubMed  CAS  Google Scholar 

  173. Akhurst, R. J. (2002). TGF-beta antagonists: Why suppress a tumor suppressor? The Journal of Clinical Investigation, 109(12), 1533–1536.

    PubMed  CAS  Google Scholar 

  174. Mathur, A., et al. (2009). Pancreatic steatosis promotes dissemination and lethality of pancreatic cancer. Journal of the American College of Surgery, 208(5), 989–994. discussion 994–6.

    Google Scholar 

  175. Yamagishi, S., et al. (2010). Positive association of circulating levels of advanced glycation end products (AGEs) with pigment epithelium-derived factor (PEDF) in a general population. Pharmacological Research, 61(2), 103–107.

    PubMed  CAS  Google Scholar 

  176. Olive, K. P., et al. (2009). Inhibition of hedgehog signaling enhances delivery of chemotherapy in a mouse model of pancreatic cancer. Science, 324(5933), 1457–1461.

    PubMed  CAS  Google Scholar 

  177. Guerra, C., et al. (2007). Chronic pancreatitis is essential for induction of pancreatic ductal adenocarcinoma by K-Ras oncogenes in adult mice. Cancer Cell, 11(3), 291–302.

    PubMed  CAS  Google Scholar 

  178. Shields, J. M., et al. (2000). Understanding Ras: ‘It ain’t over ‘til it’s over’. Trends in Cell Biology, 10(4), 147–154.

    PubMed  CAS  Google Scholar 

  179. Guerra, C., et al. (2003). Tumor induction by an endogenous K-ras oncogene is highly dependent on cellular context. Cancer Cell, 4(2), 111–120.

    PubMed  CAS  Google Scholar 

  180. Tuveson, D. A., et al. (2004). Endogenous oncogenic K-ras(G12D) stimulates proliferation and widespread neoplastic and developmental defects. Cancer Cell, 5(4), 375–387.

    PubMed  CAS  Google Scholar 

  181. Pin, C. L., Bonvissuto, A. C., & Konieczny, S. F. (2000). Mist1 expression is a common link among serous exocrine cells exhibiting regulated exocytosis. Anatomical Record, 259(2), 157–167.

    PubMed  CAS  Google Scholar 

  182. Pin, C. L., et al. (2001). The bHLH transcription factor Mist1 is required to maintain exocrine pancreas cell organization and acinar cell identity. The Journal of Cell Biology, 155(4), 519–530.

    PubMed  CAS  Google Scholar 

  183. Tuveson, D. A., et al. (2006). Mist1-KrasG12D knock-in mice develop mixed differentiation metastatic exocrine pancreatic carcinoma and hepatocellular carcinoma. Cancer Research, 66(1), 242–247.

    PubMed  CAS  Google Scholar 

  184. Shi, G., et al. (2009). Loss of the acinar-restricted transcription factor Mist1 accelerates Kras-induced pancreatic intraepithelial neoplasia. Gastroenterology, 136(4), 1368–1378.

    PubMed  CAS  Google Scholar 

  185. Mao, X., Fujiwara, Y., & Orkin, S. H. (1999). Improved reporter strain for monitoring Cre recombinase-mediated DNA excisions in mice. Proc Natl Acad Sci USA, 96(9), 5037–5042.

    PubMed  CAS  Google Scholar 

  186. Lakso, M., et al. (1992). Targeted oncogene activation by site-specific recombination in transgenic mice. Proc Natl Acad Sci USA, 89(14), 6232–6236.

    PubMed  CAS  Google Scholar 

  187. Jackson, E. L., et al. (2001). Analysis of lung tumor initiation and progression using conditional expression of oncogenic K-ras. Genes & Development, 15(24), 3243–3248.

    CAS  Google Scholar 

  188. Carriere, C., et al. (2007). The nestin progenitor lineage is the compartment of origin for pancreatic intraepithelial neoplasia. Proc Natl Acad Sci USA, 104(11), 4437–4442.

    PubMed  CAS  Google Scholar 

  189. Leach, S. D. (2005). Epithelial differentiation in pancreatic development and neoplasia: New niches for nestin and Notch. Journal of Clinical Gastroenterology, 39(4 Suppl 2), S78–S82.

    PubMed  Google Scholar 

  190. Fendrich, V., et al. (2008). Hedgehog signaling is required for effective regeneration of exocrine pancreas. Gastroenterology, 135(2), 621–631.

    PubMed  CAS  Google Scholar 

  191. Habbe, N., et al. (2008). Spontaneous induction of murine pancreatic intraepithelial neoplasia (mPanIN) by acinar cell targeting of oncogenic Kras in adult mice. Proc Natl Acad Sci USA, 105(48), 18913–18918.

    PubMed  CAS  Google Scholar 

  192. Trobridge, P., et al. (2009). TGF-beta receptor inactivation and mutant Kras induce intestinal neoplasms in mice via a beta-catenin-independent pathway. Gastroenterology, 136(5), 1680–1688. e7.

    PubMed  CAS  Google Scholar 

  193. Kim, W. Y., et al. (2009). HIF2alpha cooperates with RAS to promote lung tumorigenesis in mice. The Journal of Clinical Investigation, 119(8), 2160–2170.

    PubMed  CAS  Google Scholar 

  194. Fan, H. Y., et al. (2009). Cell type-specific targeted mutations of Kras and Pten document proliferation arrest in granulosa cells versus oncogenic insult to ovarian surface epithelial cells. Cancer Research, 69(16), 6463–6472.

    PubMed  CAS  Google Scholar 

  195. Dail, M., et al. (2010). Mutant Ikzf1, KrasG12D, and Notch1 cooperate in T lineage leukemogenesis and modulate responses to targeted agents. Proc Natl Acad Sci USA, 107(11), 5106–5111.

    PubMed  CAS  Google Scholar 

  196. Sund, N. J., et al. (2001). Tissue-specific deletion of Foxa2 in pancreatic beta cells results in hyperinsulinemic hypoglycemia. Genes & Development, 15(13), 1706–1715.

    CAS  Google Scholar 

  197. Su, Y., et al., N-Cadherin haploinsufficiency increases survival in a mouse model of pancreatic cancer. Oncogene, 2012;31;4484-4489.

    Google Scholar 

  198. Karlsson, R., et al. (2009). Rho GTPase function in tumorigenesis. Biochimica et Biophysica Acta, 1796(2), 91–98.

    PubMed  CAS  Google Scholar 

  199. Heid, I., et al. (2011). Early requirement of Rac1 in a mouse model of pancreatic cancer. Gastroenterology, 141(2), 719–730. 730 e1-7.

    PubMed  CAS  Google Scholar 

  200. Nakhai, H., et al. (2008). Conditional ablation of Notch signaling in pancreatic development. Development, 135(16), 2757–2765.

    PubMed  CAS  Google Scholar 

  201. Stanger, B. Z., et al. (2005). Pten constrains centroacinar cell expansion and malignant transformation in the pancreas. Cancer Cell, 8(3), 185–195.

    PubMed  CAS  Google Scholar 

  202. Rowley, M., et al. (2011). Inactivation of Brca2 promotes Trp53-associated but inhibits KrasG12D-dependent pancreatic cancer development in mice. Gastroenterology, 140(4), 1303–1313. e1-3.

    PubMed  CAS  Google Scholar 

  203. Feldmann, G., et al. (2011). Inactivation of Brca2 cooperates with Trp53(R172H) to induce invasive pancreatic ductal adenocarcinomas in mice: A mouse model of familial pancreatic cancer. Cancer Biology & Therapy, 11(11), 959–968.

    CAS  Google Scholar 

  204. Bardeesy, N., et al. (2006). Both p16(Ink4a) and the p19(Arf)-p53 pathway constrain progression of pancreatic adenocarcinoma in the mouse. Proc Natl Acad Sci USA, 103(15), 5947–5952.

    PubMed  CAS  Google Scholar 

  205. Corcoran, R. B., et al. (2011). STAT3 plays a critical role in KRAS-induced pancreatic tumorigenesis. Cancer Research, 71(14), 5020–5029.

    PubMed  CAS  Google Scholar 

  206. Fukuda, A., et al. (2011). Stat3 and MMP7 contribute to pancreatic ductal adenocarcinoma initiation and progression. Cancer Cell, 19(4), 441–455.

    PubMed  CAS  Google Scholar 

  207. Siveke, J. T., et al. (2008). Notch signaling is required for exocrine regeneration after acute pancreatitis. Gastroenterology, 134(2), 544–555.

    PubMed  CAS  Google Scholar 

  208. Mazur, P. K., et al. (2010). Notch2 is required for progression of pancreatic intraepithelial neoplasia and development of pancreatic ductal adenocarcinoma. Proc Natl Acad Sci USA, 107(30), 13438–13443.

    PubMed  CAS  Google Scholar 

  209. Morton, J. P., et al. (2010). LKB1 haploinsufficiency cooperates with Kras to promote pancreatic cancer through suppression of p21-dependent growth arrest. Gastroenterology, 39(2), 586–597. 597 e1-6.

    Google Scholar 

  210. Murtaugh, L. C., et al. (2003). Notch signaling controls multiple steps of pancreatic differentiation. Proc Natl Acad Sci USA, 100(25), 14920–14925.

    PubMed  CAS  Google Scholar 

  211. Aguirre, A. J., et al. (2003). Activated Kras and Ink4a/Arf deficiency cooperate to produce metastatic pancreatic ductal adenocarcinoma. Genes & Development, 17(24), 3112–3126.

    CAS  Google Scholar 

  212. Morton, J. P., et al. (2010). Mutant p53 drives metastasis and overcomes growth arrest/senescence in pancreatic cancer. Proc Natl Acad Sci USA, 107(1), 246–251.

    PubMed  CAS  Google Scholar 

  213. Vincent, D. F., et al. (2009). Inactivation of TIF1gamma cooperates with Kras to induce cystic tumors of the pancreas. PLoS Genetics, 5(7), e1000575.

    PubMed  Google Scholar 

  214. Skoulidis, F., et al. (2010). Germline Brca2 heterozygosity promotes Kras(G12D)-driven carcinogenesis in a murine model of familial pancreatic cancer. Cancer Cell, 18(5), 499–509.

    PubMed  CAS  Google Scholar 

  215. Maniati, E., et al. (2011). Crosstalk between the canonical NF-kappaB and Notch signaling pathways inhibits Ppargamma expression and promotes pancreatic cancer progression in mice. The Journal of Clinical Investigation, 121(12), 4685–4699.

    PubMed  CAS  Google Scholar 

  216. Hanlon, L., et al. (2010). Notch1 functions as a tumor suppressor in a model of K-ras-induced pancreatic ductal adenocarcinoma. Cancer Research, 70(11), 4280–4286.

    PubMed  CAS  Google Scholar 

  217. De La, O. J., et al. (2008). Notch and Kras reprogram pancreatic acinar cells to ductal intraepithelial neoplasia. Proc Natl Acad Sci USA, 105(48), 18907–18912.

    Google Scholar 

  218. Tinder, T. L., et al. (2008). MUC1 enhances tumor progression and contributes toward immunosuppression in a mouse model of spontaneous pancreatic adenocarcinoma. Journal of Immunology, 181(5), 3116–3125.

    CAS  Google Scholar 

  219. Mukherjee, P., et al. (2009). Progression of pancreatic adenocarcinoma is significantly impeded with a combination of vaccine and COX-2 inhibition. Journal of Immunology, 182(1), 216–224.

    CAS  Google Scholar 

  220. Sharpless, N. E., et al. (2001). Loss of p16Ink4a with retention of p19Arf predisposes mice to tumorigenesis. Nature, 413(6851), 86–91.

    PubMed  CAS  Google Scholar 

  221. Collado, M., et al. (2005). Tumour biology: Senescence in premalignant tumours. Nature, 436(7051), 642.

    PubMed  CAS  Google Scholar 

  222. Yan, K. P., et al. (2004). Molecular cloning, genomic structure, and expression analysis of the mouse transcriptional intermediary factor 1 gamma gene. Gene, 334, 3–13.

    PubMed  CAS  Google Scholar 

  223. Su, G. H., et al. (2001). ACVR1B (ALK4, activin receptor type 1B) gene mutations in pancreatic carcinoma. Proc Natl Acad Sci USA, 98(6), 3254–3257.

    PubMed  CAS  Google Scholar 

  224. Gu, Z., et al. (1998). The type I activin receptor ActRIB is required for egg cylinder organization and gastrulation in the mouse. Genes & Development, 12(6), 844–857.

    CAS  Google Scholar 

  225. Qiu, W., et al. (2011). Conditional activin receptor type 1B (Acvr1b) knockout mice reveal hair loss abnormality. The Journal of Investigative Dermatology, 131(5), 1067–1076.

    PubMed  CAS  Google Scholar 

  226. Schonleben, F., et al. (2008). PIK3CA, KRAS, and BRAF mutations in intraductal papillary mucinous neoplasm/carcinoma (IPMN/C) of the pancreas. Langenbeck's Archives of Surgery, 393(3), 289–296.

    PubMed  Google Scholar 

  227. Okami, K., et al. (1998). Analysis of PTEN/MMAC1 alterations in aerodigestive tract tumors. Cancer Research, 58(3), 509–511.

    PubMed  CAS  Google Scholar 

  228. Ying, H., et al. (2011). Pten is a major tumor suppressor in pancreatic ductal adenocarcinoma and regulates an NF-kappaB-cytokine network. Cancer Discov, 1(2), 158–169.

    PubMed  CAS  Google Scholar 

  229. Hill, R., et al. (2010). PTEN loss accelerates KrasG12D-induced pancreatic cancer development. Cancer Research, 70(18), 7114–7124.

    PubMed  CAS  Google Scholar 

  230. Hruban, R. H., et al. (1999). Familial pancreatic cancer. Annals of Oncology, 4, 69–73.

    Google Scholar 

  231. Couch, F. J., et al. (2007). The prevalence of BRCA2 mutations in familial pancreatic cancer. Cancer Epidemiology, Biomarkers & Prevention, 16(2), 342–346.

    CAS  Google Scholar 

  232. Su, G. H., et al. (1999). Germline and somatic mutations of the STK11/LKB1 Peutz-Jeghers gene in pancreatic and biliary cancers. American Journal of Pathology, 154, 1835–1840.

    PubMed  CAS  Google Scholar 

  233. Giardiello, F. M., et al. (2000). Very high risk of cancer in familial Peutz-Jeghers syndrome. Gastroenterology, 119(6), 1447–1453.

    PubMed  CAS  Google Scholar 

  234. Ylikorkala, A., et al. (2001). Vascular abnormalities and deregulation of VEGF in Lkb1-deficient mice. Science, 293(5533), 1323–1326.

    PubMed  CAS  Google Scholar 

  235. Grote, V.A., et al., The Associations of advanced glycation end products and its soluble receptor with pancreatic cancer risk: A case–control study within the prospective EPIC cohort. Cancer Epidemiol Biomarkers Prev, 2012;21:619-628.

    Google Scholar 

  236. DiNorcia, J., et al. (2012). RAGE gene deletion inhibits the development and progression of ductal neoplasia and prolongs survival in a murine model of pancreatic cancer. Journal of Gastrointestinal Surgery, 16(1), 104–112. discussion 112.

    PubMed  Google Scholar 

  237. Meylan, E., et al. (2009). Requirement for NF-kappaB signalling in a mouse model of lung adenocarcinoma. Nature, 462(7269), 104–107.

    PubMed  CAS  Google Scholar 

  238. Fendrich, V., et al. (2010). The angiotensin-I-converting enzyme inhibitor enalapril and aspirin delay progression of pancreatic intraepithelial neoplasia and cancer formation in a genetically engineered mouse model of pancreatic cancer. Gut, 59(5), 630–637.

    PubMed  CAS  Google Scholar 

  239. Ling, J., et al. (2012). KrasG12D-induced IKK2/beta/NF-kappaB activation by IL-1alpha and p62 feedforward loops is required for development of pancreatic ductal adenocarcinoma. Cancer Cell, 21(1), 105–120.

    PubMed  CAS  Google Scholar 

  240. Gendler, S. J., & Spicer, A. P. (1995). Epithelial mucin genes. Annual Review of Physiology, 57, 607–634.

    PubMed  CAS  Google Scholar 

  241. Rowse, G. J., et al. (1998). Tolerance and immunity to MUC1 in a human MUC1 transgenic murine model. Cancer Research, 58(2), 315–321.

    PubMed  CAS  Google Scholar 

  242. Whipple, C.A., A.L. Young, and M. Korc, A Kras(G12D)-driven genetic mouse model of pancreatic cancer requires glypican-1 for efficient proliferation and angiogenesis. Oncogene, 2012;31:2535-2544.

    Google Scholar 

  243. Aikawa, T., et al. (2008). Glypican-1 modulates the angiogenic and metastatic potential of human and mouse cancer cells. The Journal of Clinical Investigation, 118(1), 89–99.

    PubMed  CAS  Google Scholar 

  244. Agbunag, C., & Bar-Sagi, D. (2004). Oncogenic K-ras drives cell cycle progression and phenotypic conversion of primary pancreatic duct epithelial cells. Cancer Research, 64(16), 5659–5663.

    PubMed  CAS  Google Scholar 

  245. Pasca di Magliano, M. (2007). Common activation of canonical Wnt signaling in pancreatic adenocarcinoma. PLoS One, 2(11), e1155.

    PubMed  Google Scholar 

  246. Morris, J. P., et al. (2010). Beta-catenin blocks Kras-dependent reprogramming of acini into pancreatic cancer precursor lesions in mice. The Journal of Clinical Investigation, 120(2), 508–520.

    PubMed  CAS  Google Scholar 

  247. Heiser, P. W., et al. (2008). Stabilization of beta-catenin induces pancreas tumor formation. Gastroenterology, 135(4), 1288–1300.

    PubMed  CAS  Google Scholar 

  248. Feldmann, G., et al. (2008). Hedgehog inhibition prolongs survival in a genetically engineered mouse model of pancreatic cancer. Gut, 57(10), 1420–1430.

    PubMed  CAS  Google Scholar 

  249. Plentz, R., et al. (2009). Inhibition of gamma-secretase activity inhibits tumor progression in a mouse model of pancreatic ductal adenocarcinoma. Gastroenterology, 136(5), 1741–1749. e6.

    PubMed  CAS  Google Scholar 

  250. Funahashi, H., et al. (2007). Delayed progression of pancreatic intraepithelial neoplasia in a conditional Kras(G12D) mouse model by a selective cyclooxygenase-2 inhibitor. Cancer Research, 67(15), 7068–7071.

    PubMed  CAS  Google Scholar 

  251. Ijichi, H., et al. (2011). Inhibiting Cxcr2 disrupts tumor-stromal interactions and improves survival in a mouse model of pancreatic ductal adenocarcinoma. The Journal of Clinical Investigation, 121(10), 4106–4117.

    PubMed  CAS  Google Scholar 

  252. Diep, C. H., et al. (2011). Synergistic effect between erlotinib and MEK inhibitors in KRAS wild-type human pancreatic cancer cells. Clinical Cancer Research, 17(9), 2744–2756.

    PubMed  CAS  Google Scholar 

  253. Branda, C. S., & Dymecki, S. M. (2004). Talking about a revolution: The impact of site-specific recombinases on genetic analyses in mice. Developmental Cell, 6(1), 7–28.

    PubMed  CAS  Google Scholar 

  254. Zheng, B., et al. (2000). Engineering mouse chromosomes with Cre-loxP: Range, efficiency, and somatic applications. Molecular and Cellular Biology, 20(2), 648–655.

    PubMed  CAS  Google Scholar 

  255. Brayton, C. F., Treuting, P. M., & Ward, J. M. (2012). Pathobiology of aging mice and GEM: Background strains and experimental design. Veterinary Pathology, 49(1), 85–105.

    PubMed  CAS  Google Scholar 

  256. Jorgenson, T. C., et al. (2010). Identification of susceptibility loci in a mouse model of KRASG12D-driven pancreatic cancer. Cancer Research, 70(21), 8398–8406.

    PubMed  CAS  Google Scholar 

  257. Yu, R., et al. (2011). Pancreatic neuroendocrine tumors in glucagon receptor-deficient mice. PLoS One, 6(8), e23397.

    PubMed  CAS  Google Scholar 

  258. Rhim, A. D., et al. (2012). EMT and dissemination precede pancreatic tumor formation. Cell, 148(1–2), 349–361.

    PubMed  CAS  Google Scholar 

  259. Collins, M. A., et al. (2012). Oncogenic Kras is required for both the initiation and maintenance of pancreatic cancer in mice. The Journal of Clinical Investigation, 122(2), 639–653.

    PubMed  CAS  Google Scholar 

  260. Wang, Y., et al. (2011). Restoring expression of wild-type p53 suppresses tumor growth but does not cause tumor regression in mice with a p53 missense mutation. The Journal of Clinical Investigation, 121(3), 893–904.

    PubMed  CAS  Google Scholar 

  261. Ventura, A., et al. (2007). Restoration of p53 function leads to tumour regression in vivo. Nature, 445(7128), 661–665.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by NCI R01 CA109525 and Pancreatic Cancer Action Network-AACR Innovative Grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gloria H. Su.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qiu, W., Su, G.H. Challenges and advances in mouse modeling for human pancreatic tumorigenesis and metastasis. Cancer Metastasis Rev 32, 83–107 (2013). https://doi.org/10.1007/s10555-012-9408-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10555-012-9408-2

Keywords

Navigation