Skip to main content

Advertisement

Log in

Unraveling mucin domains in cancer and metastasis: when protectors become predators

  • Published:
Cancer and Metastasis Reviews Aims and scope Submit manuscript

Abstract

A dynamic mucosal layer shields the epithelial cells lining the body cavities and is made up of high molecular weight, heavily glycosylated, multidomain proteins called mucins. Mucins, broadly grouped into transmembrane and secreted mucins, are the first responders to any mechanical or chemical insult to the epithelia and help maintain tissue homeostasis. However, their intrinsic properties to protect and repair the epithelia are exploited during oncogenic processes, where mucins are metamorphosed to aid the tumor cells in their malignant journey. Diverse domains, like the variable number tandem repeats (VNTR), sea urchin sperm protein enterokinase and agrin (SEA), adhesion-associated domain (AMOP), nidogen-like domain (NIDO), epidermal growth factor-like domain (EGF), and von Willebrand factor type D domain (vWD) on mucins, including MUC1, MUC4, MUC5AC, MUC5B, and MUC16, have been shown to facilitate cell-to-cell and cell-to-matrix interactions, and cell-autonomous signaling to promote tumorigenesis and distant dissemination of tumor cells. Several obstacles have limited the study of mucins, including technical difficulties in working with these huge glycoproteins, the dearth of scientific tools, and lack of animal models; thus, the tissue-dependent and domain-specific roles of mucins during mucosal protection, chronic inflammation, tumorigenesis, and hematological dissemination of malignant cells are still unclear. Future studies should try to integrate information on the rheological, molecular, and biological characteristics of mucins to comprehensively delineate their pathophysiological role and evaluate their suitability as targets in future diagnostic and therapeutic strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Peterson, L. W., & Artis, D. (2014). Intestinal epithelial cells: regulators of barrier function and immune homeostasis. Nature Reviews Immunology, 14(3), 141–153.

    PubMed  CAS  Google Scholar 

  2. Linden, S., Sutton, P., Karlsson, N., Korolik, V., & McGuckin, M. (2008). Mucins in the mucosal barrier to infection. Mucosal Immunology, 1(3), 183–197.

    PubMed  PubMed Central  CAS  Google Scholar 

  3. Johansson, M. E., Sjövall, H., & Hansson, G. C. (2013). The gastrointestinal mucus system in health and disease. Nature Reviews Gastroenterology & Hepatology, 10(6), 352–361.

    CAS  Google Scholar 

  4. Lillehoj, E. P., Kato, K., Lu, W., & Kim, K. C. (2013). Cellular and molecular biology of airway mucins. In International review of cell and molecular biology (Vol. 303, pp. 139–202). Elsevier.

  5. Kufe, D. W. (2009). Mucins in cancer: function, prognosis and therapy. Nature Reviews Cancer, 9(12), 874–885.

    PubMed  PubMed Central  CAS  Google Scholar 

  6. Desseyn, J.-L., Buisine, M.-P., Porchet, N., Aubert, J.-P., Degand, P., & Laine, A. (1998). Evolutionary history of the 11p15 human mucin gene family. Journal of Molecular Evolution, 46(1), 102–106.

    PubMed  CAS  Google Scholar 

  7. Duraisamy, S., Ramasamy, S., Kharbanda, S., & Kufe, D. (2006). Distinct evolution of the human carcinoma-associated transmembrane mucins, MUC1, MUC4 AND MUC16. Gene, 373, 28–34.

    PubMed  CAS  Google Scholar 

  8. van Putten, J. P., & Strijbis, K. (2017). Transmembrane mucins: signaling receptors at the intersection of inflammation and cancer. Journal of Innate Immunity, 9(3), 281–299.

    PubMed  PubMed Central  Google Scholar 

  9. Lakshmanan, I., Ponnusamy, M. P., Macha, M. A., Haridas, D., Majhi, P. D., Kaur, S., Jain, M., Batra, S. K., & Ganti, A. K. (2015). Mucins in lung cancer: diagnostic, prognostic, and therapeutic implications. Journal of Thoracic Oncology, 10(1), 19–27.

    PubMed  CAS  Google Scholar 

  10. Hollingsworth, M. A., & Swanson, B. J. (2004). Mucins in cancer: protection and control of the cell surface. Nature Reviews Cancer, 4(1), 45–60.

    PubMed  CAS  Google Scholar 

  11. Kaur, S., Kumar, S., Momi, N., Sasson, A. R., & Batra, S. K. (2013). Mucins in pancreatic cancer and its microenvironment. Nature Reviews Gastroenterology & Hepatology, 10(10), 607–620.

    CAS  Google Scholar 

  12. Pothuraju, R., Krishn, S. R., Gautam, S. K., Pai, P., Ganguly, K., Chaudhary, S., Rachagani, S., Kaur, S., & Batra, S. K. (2020). Mechanistic and functional shades of mucins and associated glycans in colon cancer. Cancers, 12(3), 649.

    PubMed Central  CAS  Google Scholar 

  13. Mukhopadhyay, P., Chakraborty, S., Ponnusamy, M. P., Lakshmanan, I., Jain, M., & Batra, S. K. (2011). Mucins in the pathogenesis of breast cancer: implications in diagnosis, prognosis and therapy. Biochimica et Biophysica Acta (BBA)-Reviews on Cancer, 1815(2), 224–240.

    CAS  Google Scholar 

  14. Singh, A. P., Senapati, S., Ponnusamy, M. P., Jain, M., Lele, S. M., Davis, J. S., Remmenga, S., & Batra, S. K. (2008). Clinical potential of mucins in diagnosis, prognosis, and therapy of ovarian cancer. The Lancet Oncology, 9(11), 1076–1085.

    PubMed  PubMed Central  CAS  Google Scholar 

  15. Bafna, S., Kaur, S., & Batra, S. K. (2010). Membrane-bound mucins: the mechanistic basis for alterations in the growth and survival of cancer cells. Oncogene, 29(20), 2893–2904.

    PubMed  PubMed Central  CAS  Google Scholar 

  16. Krishn, S. R., Ganguly, K., Kaur, S., & Batra, S. K. (2018). Ramifications of secreted mucin MUC5AC in malignant journey: a holistic view. Carcinogenesis, 39(5), 633–651.

    PubMed  PubMed Central  CAS  Google Scholar 

  17. Bhatia, R., Gautam, S. K., Cannon, A., Thompson, C., Hall, B. R., Aithal, A., Banerjee, K., Jain, M., Solheim, J. C., Kumar, S., & Batra, S. K. (2019). Cancer-associated mucins: role in immune modulation and metastasis. Cancer and Metastasis Reviews, 38(1–2), 223–236.

    PubMed  CAS  Google Scholar 

  18. Cavey, M., & Lecuit, T. (2009). Molecular bases of cell–cell junctions stability and dynamics. Cold Spring Harbor Perspectives in Biology, 1(5), a002998.

    PubMed  PubMed Central  Google Scholar 

  19. Tepass, U., Tanentzapf, G., Ward, R., & Fehon, R. (2001). Epithelial cell polarity and cell junctions in Drosophila. Annual Review of Genetics, 35(1), 747–784.

    PubMed  CAS  Google Scholar 

  20. Wagner, C., Wheeler, K., & Ribbeck, K. (2018). Mucins and their role in shaping the functions of mucus barriers. Annual Review of Cell and Developmental Biology, 34, 189–215.

    PubMed  CAS  Google Scholar 

  21. Silverman, H. S., Parry, S., Sutton-Smith, M., Burdick, M. D., McDermott, K., Reid, C. J., Batra, S. K., Morris, H. R., Hollingsworth, M. A., Dell, A., & Harris, A. (2001). In vivo glycosylation of mucin tandem repeats. Glycobiology, 11(6), 459–471.

    PubMed  CAS  Google Scholar 

  22. Dhanisha, S. S., Guruvayoorappan, C., Drishya, S., & Abeesh, P. (2018). Mucins: structural diversity, biosynthesis, its role in pathogenesis and as possible therapeutic targets. Critical Reviews in Oncology/Hematology, 122, 98–122.

    PubMed  Google Scholar 

  23. Hayashi, T., Takahashi, T., Motoya, S., Ishida, T., Itoh, F., Adachi, M., Hinoda, Y., & Imai, K. (2001). MUC1 mucin core protein binds to the domain 1 of ICAM-1. Digestion, 63(Suppl 1), 87–92. https://doi.org/10.1159/000051917.

    Article  PubMed  CAS  Google Scholar 

  24. Rajabi, H., Hata, T., Li, W., Long, M. D., Hu, Q., Liu, S., Raina, D., Kui, L., Yasumizu, Y., Hong, D., Samur, M., & Kufe, D. (2019). MUC1-C represses the RASSF1A tumor suppressor in human carcinoma cells. Oncogene, 38(47), 7266–7277. https://doi.org/10.1038/s41388-019-0940-1.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Kinlough, C. L., Poland, P. A., Bruns, J. B., Harkleroad, K. L., & Hughey, R. P. (2004). MUC1 membrane trafficking is modulated by multiple interactions. Journal of Biological Chemistry, 279(51), 53071–53077.

    PubMed  CAS  Google Scholar 

  26. Kinlough, C. L., McMahan, R. J., Poland, P. A., Bruns, J. B., Harkleroad, K. L., Stremple, R. J., Kashlan, O. B., Weixel, K. M., Weisz, O. A., & Hughey, R. P. (2006). Recycling of MUC1 is dependent on its palmitoylation. Journal of Biological Chemistry, 281(17), 12112–12122.

    PubMed  CAS  Google Scholar 

  27. Singh, P. K., & Hollingsworth, M. A. (2006). Cell surface-associated mucins in signal transduction. Trends in Cell Biology, 16(9), 467–476.

    PubMed  CAS  Google Scholar 

  28. Schroeder, J. A., Thompson, M. C., Gardner, M. M., & Gendler, S. J. (2001). Transgenic MUC1 interacts with epidermal growth factor receptor and correlates with mitogen-activated protein kinase activation in the mouse mammary gland. Journal of Biological Chemistry, 276(16), 13057–13064.

    PubMed  CAS  Google Scholar 

  29. Hattrup, C. L., & Gendler, S. J. (2006). MUC1 alters oncogenic events and transcription in human breast cancer cells. Breast Cancer Research, 8(4), R37.

    PubMed  PubMed Central  Google Scholar 

  30. Schroeder, J. A., Adriance, M. C., Thompson, M. C., Camenisch, T. D., & Gendler, S. J. (2003). MUC1 alters β-catenin-dependent tumor formation and promotes cellular invasion. Oncogene, 22(9), 1324–1332.

    PubMed  CAS  Google Scholar 

  31. Bitler, B. G., Menzl, I., Huerta, C. L., Sands, B., Knowlton, W., Chang, A., & Schroeder, J. A. (2009). Intracellular MUC1 peptides inhibit cancer progression. Clinical Cancer Research, 15(1), 100–109.

    PubMed  PubMed Central  CAS  Google Scholar 

  32. Li, Y., Kuwahara, H., Ren, J., Wen, G., & Kufe, D. (2001). The c-Src tyrosine kinase regulates signaling of the human DF3/MUC1 carcinoma-associated antigen with GSK3β and β-catenin. Journal of Biological Chemistry, 276(9), 6061–6064.

    PubMed  CAS  Google Scholar 

  33. Roy, L. D., Sahraei, M., Subramani, D. B., Besmer, D., Nath, S., Tinder, T. L., Bajaj, E., Shanmugam, K., Lee, Y. Y., Hwang, S. I. L., Gendler, S. J., & Mukherjee, P. (2011). MUC1 enhances invasiveness of pancreatic cancer cells by inducing epithelial to mesenchymal transition. Oncogene, 30(12), 1449–1459.

    PubMed  CAS  Google Scholar 

  34. Ho, S. B., Dvorak, L. A., Moor, R. E., Jacobson, A. C., Frey, M. R., Corredor, J., Polk, D. B., & Shekels, L. L. (2006). Cysteine-rich domains of muc3 intestinal mucin promote cell migration, inhibit apoptosis, and accelerate wound healing. Gastroenterology, 131(5), 1501–1517.

    PubMed  CAS  Google Scholar 

  35. Gum, J. R., Ho, J. J., Pratt, W. S., Hicks, J. W., Hill, A. S., Vinall, L. E., et al. (1997). MUC3 human intestinal mucin analysis of gene structure, the carboxyl terminus, and a novel upstream repetitive region. Journal of Biological Chemistry, 272(42), 26678–26686.

    PubMed  CAS  Google Scholar 

  36. Tang, J., Zhu, Y., Xie, K., Zhang, X., Zhi, X., Wang, W., Li, Z., Zhang, Q., Wang, L., Wang, J., & Xu, Z. (2016). The role of the AMOP domain in MUC4/Y-promoted tumour angiogenesis and metastasis in pancreatic cancer. Journal of Experimental & Clinical Cancer Research, 35(1), 91.

    Google Scholar 

  37. Kargı, A., Dinç, Z. A., Başok, O., & Üçvet, A. (2006). MUC4 expression and its relation to ErbB2 expression, apoptosis, proliferation, differentiation, and tumor stage in non-small cell lung cancer (NSCLC). Pathology, Research and Practice, 202(8), 577–583.

    Google Scholar 

  38. Songyang, Z., Shoelson, S., McGlade, J., Olivier, P., Pawson, T., Bustelo, X., et al. (1994). Specific motifs recognized by the SH2 domains of Csk, 3BP2, fps/fes, GRB-2, HCP, SHC, Syk, and Vav. Molecular and Cellular Biology, 14(4), 2777–2785.

    PubMed  PubMed Central  CAS  Google Scholar 

  39. Williams, S. J., McGuckin, M. A., Gotley, D. C., Eyre, H. J., Sutherland, G. R., & Antalis, T. M. (1999). Two novel mucin genes down-regulated in colorectal cancer identified by differential display. Cancer Research, 59(16), 4083–4089.

    PubMed  CAS  Google Scholar 

  40. Burgel, P., & Nadel, J. (2008). Epidermal growth factor receptor-mediated innate immune responses and their roles in airway diseases. European Respiratory Journal, 32(4), 1068–1081.

    PubMed  CAS  Google Scholar 

  41. Chauhan, S. C., Ebeling, M. C., Maher, D. M., Koch, M. D., Watanabe, A., Aburatani, H., Lio, Y., & Jaggi, M. (2012). MUC13 mucin augments pancreatic tumorigenesis. Molecular Cancer Therapeutics, 11(1), 24–33.

    PubMed  CAS  Google Scholar 

  42. Das, S., Rachagani, S., Torres-Gonzalez, M. P., Lakshmanan, I., Majhi, P. D., Smith, L. M., Wagner, K. U., & Batra, S. K. (2015). Carboxyl-terminal domain of MUC16 imparts tumorigenic and metastatic functions through nuclear translocation of JAK2 to pancreatic cancer cells. Oncotarget, 6(8), 5772–5787.

    PubMed  PubMed Central  Google Scholar 

  43. Yang, B., Wu, A., Hu, Y., Tao, C., Wang, J. M., Lu, Y., & Xing, R. (2019). Mucin 17 inhibits the progression of human gastric cancer by limiting inflammatory responses through a MYH9-p53-RhoA regulatory feedback loop. Journal of Experimental & Clinical Cancer Research, 38(1), 283.

    Google Scholar 

  44. Sheehan, J. K., Brazeau, C., Kutay, S., Pigeon, H., Kirkham, S., Howard, M., et al. (2000). Physical characterization of the MUC5AC mucin: a highly oligomeric glycoprotein whether isolated from cell culture or in vivo from respiratory mucous secretions. Biochemical Journal, 347(1), 37–44.

    PubMed  PubMed Central  CAS  Google Scholar 

  45. Sheehan, J. K., Howard, M., Richardson, P. S., Longwill, T., & Thornton, D. J. (1999). Physical characterization of a low-charge glycoform of the MUC5B mucin comprising the gel-phase of an asthmatic respiratory mucous plug. Biochemical Journal, 338(2), 507–513.

    PubMed  PubMed Central  CAS  Google Scholar 

  46. McAuley, J. L., Linden, S. K., Png, C. W., King, R. M., Pennington, H. L., Gendler, S. J., Florin, T. H., Hill, G. R., Korolik, V., & McGuckin, M. A. (2007). MUC1 cell surface mucin is a critical element of the mucosal barrier to infection. The Journal of Clinical Investigation, 117(8), 2313–2324.

    PubMed  PubMed Central  CAS  Google Scholar 

  47. McGuckin, M. A., Every, A. L., Skene, C. D., Linden, S. K., Chionh, Y. T., Swierczak, A., McAuley, J., Harbour, S., Kaparakis, M., Ferrero, R., & Sutton, P. (2007). Muc1 mucin limits both Helicobacter pylori colonization of the murine gastric mucosa and associated gastritis. Gastroenterology, 133(4), 1210–1218.

    PubMed  CAS  Google Scholar 

  48. Blalock, T. D., Spurr-Michaud, S. J., Tisdale, A. S., Heimer, S. R., Gilmore, M. S., Ramesh, V., & Gipson, I. K. (2007). Functions of MUC16 in corneal epithelial cells. Investigative Ophthalmology & Visual Science, 48(10), 4509–4518.

    Google Scholar 

  49. Ahmad, R., Raina, D., Joshi, M. D., Kawano, T., Ren, J., Kharbanda, S., & Kufe, D. (2009). MUC1-C oncoprotein functions as a direct activator of the nuclear factor-κB p65 transcription factor. Cancer Research, 69(17), 7013–7021.

    PubMed  PubMed Central  CAS  Google Scholar 

  50. Lindén, S. K., Florin, T. H., & McGuckin, M. A. (2008). Mucin dynamics in intestinal bacterial infection. PLoS One, 3(12), e3952.

    PubMed  PubMed Central  Google Scholar 

  51. Ahmad, R., Raina, D., Trivedi, V., Ren, J., Rajabi, H., Kharbanda, S., & Kufe, D. (2007). MUC1 oncoprotein activates the IκB kinase β complex and constitutive NF-κB signalling. Nature Cell Biology, 9(12), 1419–1427.

    PubMed  PubMed Central  CAS  Google Scholar 

  52. Smirnova, M. G., Guo, L., Birchall, J. P., & Pearson, J. P. (2003). LPS up-regulates mucin and cytokine mRNA expression and stimulates mucin and cytokine secretion in goblet cells. Cellular Immunology, 221(1), 42–49.

    PubMed  CAS  Google Scholar 

  53. Fischer, B. M., Cuellar, J. G., Diehl, M. L., deFreytas, A. M., Zhang, J., Carraway, K. L., et al. (2003). Neutrophil elastase increases MUC4 expression in normal human bronchial epithelial cells. American Journal of Physiology. Lung Cellular and Molecular Physiology, 284(4), L671–L679.

    PubMed  CAS  Google Scholar 

  54. Delmotte, P., Degroote, S., Lafitte, J.-J., Lamblin, G., Perini, J.-M., & Roussel, P. (2002). Tumor necrosis factor α increases the expression of glycosyltransferases and sulfotransferases responsible for the biosynthesis of sialylated and/or sulfated Lewis x epitopes in the human bronchial mucosa. Journal of Biological Chemistry, 277(1), 424–431.

    PubMed  CAS  Google Scholar 

  55. Lindén, S. K., Wickström, C., Lindell, G., Gilshenan, K., & Carlstedt, I. (2008). Four modes of adhesion are used during Helicobacter pylori binding to human mucins in the oral and gastric niches. Helicobacter, 13(2), 81–93.

    PubMed  Google Scholar 

  56. Schulz, B. L., Sloane, A. J., Robinson, L. J., Prasad, S. S., Lindner, R. A., Robinson, M., Bye, P. T., Nielson, D. W., Harry, J. L., Packer, N. H., & Karlsson, N. G. (2007). Glycosylation of sputum mucins is altered in cystic fibrosis patients. Glycobiology, 17(7), 698–712.

    PubMed  CAS  Google Scholar 

  57. Xavier, R., & Podolsky, D. (2007). Unravelling the pathogenesis of inflammatory bowel disease. Nature, 448(7152), 427–434.

    PubMed  CAS  Google Scholar 

  58. Feagins, L. A., Souza, R. F., & Spechler, S. J. (2009). Carcinogenesis in IBD: potential targets for the prevention of colorectal cancer. Nature Reviews Gastroenterology & Hepatology, 6(5), 297–305.

    CAS  Google Scholar 

  59. Heazlewood, C. K., Cook, M. C., Eri, R., Price, G. R., Tauro, S. B., Taupin, D., Thornton, D. J., Png, C. W., Crockford, T. L., Cornall, R. J., Adams, R., Kato, M., Nelms, K. A., Hong, N. A., Florin, T. H. J., Goodnow, C. C., & McGuckin, M. A. (2008). Aberrant mucin assembly in mice causes endoplasmic reticulum stress and spontaneous inflammation resembling ulcerative colitis. PLoS Medicine, 5(3), e54.

    PubMed  PubMed Central  Google Scholar 

  60. Schwerbrock, N. M., Makkink, M. K., van der Sluis, M., Büller, H. A., Einerhand, A. W., Sartor, R. B., et al. (2004). Interleukin 10-deficient mice exhibit defective colonic Muc2 synthesis before and after induction of colitis by commensal bacteria. Inflammatory Bowel Diseases, 10(6), 811–823.

    PubMed  Google Scholar 

  61. Karin, M., & Greten, F. R. (2005). NF-κB: linking inflammation and immunity to cancer development and progression. Nature Reviews Immunology, 5(10), 749–759.

    PubMed  CAS  Google Scholar 

  62. Vinall, L. E., King, M., Novelli, M., Green, C. A., Daniels, G., Hilkens, J., Sarner, M., & Swallow, D. M. (2002). Altered expression and allelic association of the hypervariable membrane mucin MUC1 in Helicobacter pylori gastritis. Gastroenterology, 123(1), 41–49.

    PubMed  CAS  Google Scholar 

  63. Kondo, S., Yoshizaki, T., Wakisaka, N., Horikawa, T., Murono, S., Jang, K. L., Joab, I., Furukawa, M., & Pagano, J. S. (2007). MUC1 induced by Epstein-Barr virus latent membrane protein 1 causes dissociation of the cell-matrix interaction and cellular invasiveness via STAT signaling. Journal of Virology, 81(4), 1554–1562.

    PubMed  CAS  Google Scholar 

  64. Vermeer, P. D., Einwalter, L. A., Moninger, T. O., Rokhlina, T., Kern, J. A., Zabner, J., & Welsh, M. J. (2003). Segregation of receptor and ligand regulates activation of epithelial growth factor receptor. Nature, 422(6929), 322–326.

    PubMed  CAS  Google Scholar 

  65. Shin, K., Fogg, V. C., & Margolis, B. (2006). Tight junctions and cell polarity. Annual Review of Cell and Developmental Biology, 22, 207–235.

    PubMed  CAS  Google Scholar 

  66. Polyak, K., & Weinberg, R. A. (2009). Transitions between epithelial and mesenchymal states: acquisition of malignant and stem cell traits. Nature Reviews Cancer, 9(4), 265–273.

    PubMed  CAS  Google Scholar 

  67. Huang, L., Chen, D., Liu, D., Yin, L., Kharbanda, S., & Kufe, D. (2005). MUC1 oncoprotein blocks glycogen synthase kinase 3β–mediated phosphorylation and degradation of β-catenin. Cancer Research, 65(22), 10413–10422.

    PubMed  CAS  Google Scholar 

  68. Huang, L., Ren, J., Chen, D., Li, Y., Kharbanda, S., & Kufe, D. (2003). MUC1 cytoplasmic domain coactivates Wnt target gene transcription and confers transformation. Cancer Biology & Therapy, 2(6), 702–706.

    CAS  Google Scholar 

  69. Aranda, V., Haire, T., Nolan, M. E., Calarco, J. P., Rosenberg, A. Z., Fawcett, J. P., Pawson, T., & Muthuswamy, S. K. (2006). Par6–aPKC uncouples ErbB2 induced disruption of polarized epithelial organization from proliferation control. Nature Cell Biology, 8(11), 1235–1245.

    PubMed  CAS  Google Scholar 

  70. Ren, J., Bharti, A., Raina, D., Chen, W., Ahmad, R., & Kufe, D. (2006). MUC1 oncoprotein is targeted to mitochondria by heregulin-induced activation of c-Src and the molecular chaperone HSP90. Oncogene, 25(1), 20–31.

    PubMed  CAS  Google Scholar 

  71. Chaturvedi, P., Singh, A. P., Chakraborty, S., Chauhan, S. C., Bafna, S., Meza, J. L., Singh, P. K., Hollingsworth, M. A., Mehta, P. P., & Batra, S. K. (2008). MUC4 mucin interacts with and stabilizes the HER2 oncoprotein in human pancreatic cancer cells. Cancer Research, 68(7), 2065–2070.

    PubMed  PubMed Central  CAS  Google Scholar 

  72. Funes, M., Miller, J. K., Lai, C., Carraway, K. L., & Sweeney, C. (2006). The mucin Muc4 potentiates neuregulin signaling by increasing the cell-surface populations of ErbB2 and ErbB3. Journal of Biological Chemistry, 281(28), 19310–19319.

    PubMed  CAS  Google Scholar 

  73. Pokutta, S., & Weis, W. I. (2007). Structure and mechanism of cadherins and catenins in cell-cell contacts. Annual Review of Cell and Developmental Biology, 23, 237–261.

    PubMed  CAS  Google Scholar 

  74. Inaguma, S., Kasai, K., & Ikeda, H. (2011). GLI1 facilitates the migration and invasion of pancreatic cancer cells through MUC5AC-mediated attenuation of E-cadherin. Oncogene, 30(6), 714–723.

    PubMed  CAS  Google Scholar 

  75. Labelle, M., & Hynes, R. O. (2012). The initial hours of metastasis: the importance of cooperative host–tumor cell interactions during hematogenous dissemination. Cancer Discovery, 2(12), 1091–1099.

    PubMed  PubMed Central  CAS  Google Scholar 

  76. Kumar, S., Cruz, E., Joshi, S., Patel, A., Jahan, R., Batra, S. K., & Jain, M. (2017). Genetic variants of mucins: unexplored conundrum. Carcinogenesis, 38(7), 671–679.

    PubMed  CAS  Google Scholar 

  77. Ponnusamy, P. M., Seshacharyulu, P., Lakshmanan, I., Vaz, A. P., Chugh, S., & Batra, K. S. (2013). Emerging role of mucins in epithelial to mesenchymal transition. Current Cancer Drug Targets, 13(9), 945–956.

    PubMed  PubMed Central  CAS  Google Scholar 

  78. Chugh, S., Gnanapragassam, V. S., Jain, M., Rachagani, S., Ponnusamy, M. P., & Batra, S. K. (2015). Pathobiological implications of mucin glycans in cancer: sweet poison and novel targets. Biochimica et Biophysica Acta (BBA)-Reviews on Cancer, 1856(2), 211–225.

    CAS  Google Scholar 

  79. Byrd, J. C., & Bresalier, R. S. (2004). Mucins and mucin binding proteins in colorectal cancer. Cancer and Metastasis Reviews, 23(1–2), 77–99.

    PubMed  CAS  Google Scholar 

  80. Horn, G., Gaziel, A., Wreschner, D. H., Smorodinsky, N. I., & Ehrlich, M. (2009). ERK and PI3K regulate different aspects of the epithelial to mesenchymal transition of mammary tumor cells induced by truncated MUC1. Experimental Cell Research, 315(8), 1490–1504.

    PubMed  CAS  Google Scholar 

  81. Rajabi, H., Ahmad, R., Jin, C., Joshi, M. D., Guha, M., Alam, M., Kharbanda, S., & Kufe, D. (2012). MUC1-C oncoprotein confers androgen-independent growth of human prostate cancer cells. Prostate, 72(15), 1659–1668. https://doi.org/10.1002/pros.22519.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Chaturvedi, P., Singh, A. P., Chakraborty, S., Chauhan, S. C., Bafna, S., Meza, J. L., Singh, P. K., Hollingsworth, M. A., Mehta, P. P., & Batra, S. K. (2008). MUC4 mucin interacts with and stabilizes the HER2 oncoprotein in human pancreatic cancer cells. Cancer Research, 68(7), 2065–2070. https://doi.org/10.1158/0008-5472.CAN-07-6041.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Ponnusamy, M. P., Singh, A. P., Jain, M., Chakraborty, S., Moniaux, N., & Batra, S. K. (2008). MUC4 activates HER2 signalling and enhances the motility of human ovarian cancer cells. British Journal of Cancer, 99(3), 520–526. https://doi.org/10.1038/sj.bjc.6604517.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Rachagani, S., Macha, M. A., Ponnusamy, M. P., Haridas, D., Kaur, S., Jain, M., & Batra, S. K. (2012). MUC4 potentiates invasion and metastasis of pancreatic cancer cells through stabilization of fibroblast growth factor receptor 1. Carcinogenesis, 33(10), 1953–1964. https://doi.org/10.1093/carcin/bgs225.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Mukhopadhyay, P., Lakshmanan, I., Ponnusamy, M. P., Chakraborty, S., Jain, M., Pai, P., Smith, L. M., Lele, S. M., & Batra, S. K. (2013). MUC4 overexpression augments cell migration and metastasis through EGFR family proteins in triple negative breast cancer cells. PLoS One, 8(2), e54455. https://doi.org/10.1371/journal.pone.0054455.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Majhi, P. D., Lakshmanan, I., Ponnusamy, M. P., Jain, M., Das, S., Kaur, S., Shimizu, S. T., West, W. W., Johansson, S. L., Smith, L. M., Yu, F., Rolle, C. E., Sharma, P., Carey, G. B., Batra, S. K., & Ganti, A. K. (2013). Pathobiological implications of MUC4 in non-small-cell lung cancer. Journal of Thoracic Oncology, 8(4), 398–407. https://doi.org/10.1097/JTO.0b013e3182829e06.

    Article  PubMed  CAS  Google Scholar 

  87. Muniyan, S., Haridas, D., Chugh, S., Rachagani, S., Lakshmanan, I., Gupta, S., Seshacharyulu, P., Smith, L. M., Ponnusamy, M. P., & Batra, S. K. (2016). MUC16 contributes to the metastasis of pancreatic ductal adenocarcinoma through focal adhesion mediated signaling mechanism. Genes & Cancer, 7(3–4), 110–124.

    CAS  Google Scholar 

  88. Haridas, D., Ponnusamy, M. P., Chugh, S., Lakshmanan, I., Seshacharyulu, P., & Batra, S. K. (2014). MUC16: molecular analysis and its functional implications in benign and malignant conditions. The FASEB Journal, 28(10), 4183–4199. https://doi.org/10.1096/fj.14-257352.

    Article  PubMed  CAS  Google Scholar 

  89. Comamala, M., Pinard, M., Theriault, C., Matte, I., Albert, A., Boivin, M., et al. (2011). Downregulation of cell surface CA125/MUC16 induces epithelial-to-mesenchymal transition and restores EGFR signalling in NIH:OVCAR3 ovarian carcinoma cells. British Journal of Cancer, 104(6), 989–999. https://doi.org/10.1038/bjc.2011.34.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Thériault, C., Pinard, M., Comamala, M., Migneault, M., Beaudin, J., Matte, I., Boivin, M., Piché, A., & Rancourt, C. (2011). MUC16 (CA125) regulates epithelial ovarian cancer cell growth, tumorigenesis and metastasis. Gynecologic Oncology, 121(3), 434–443.

    PubMed  Google Scholar 

  91. Lakshmanan, I., Rachagani, S., Hauke, R., Krishn, S. R., Paknikar, S., Seshacharyulu, P., Karmakar, S., Nimmakayala, R. K., Kaushik, G., Johansson, S. L., Carey, G. B., Ponnusamy, M. P., Kaur, S., Batra, S. K., & Ganti, A. K. (2016). MUC5AC interactions with integrin beta4 enhances the migration of lung cancer cells through FAK signaling. Oncogene, 35(31), 4112–4121. https://doi.org/10.1038/onc.2015.478.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. Pothuraju, R., Rachagani, S., Krishn, S. R., Chaudhary, S., Nimmakayala, R. K., Siddiqui, J. A., Ganguly, K., Lakshmanan, I., Cox, J. L., Mallya, K., Kaur, S., & Batra, S. K. (2020). Molecular implications of MUC5AC-CD44 axis in colorectal cancer progression and chemoresistance. Molecular Cancer, 19(1), 37. https://doi.org/10.1186/s12943-020-01156-y.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  93. Yamazoe, S., Tanaka, H., Sawada, T., Amano, R., Yamada, N., Ohira, M., & Hirakawa, K. (2010). RNA interference suppression of mucin 5AC (MUC5AC) reduces the adhesive and invasive capacity of human pancreatic cancer cells. Journal of Experimental & Clinical Cancer Research, 29, 53. https://doi.org/10.1186/1756-9966-29-53.

    Article  CAS  Google Scholar 

  94. Truant, S., Bruyneel, E., Gouyer, V., De Wever, O., Pruvot, F. R., Mareel, M., et al. (2003). Requirement of both mucins and proteoglycans in cell-cell dissociation and invasiveness of colon carcinoma HT-29 cells. International Journal of Cancer, 104(6), 683–694. https://doi.org/10.1002/ijc.11011.

    Article  PubMed  CAS  Google Scholar 

  95. Chang, J., & Chaudhuri, O. (2019). Beyond proteases: basement membrane mechanics and cancer invasion. The Journal of Cell Biology, 218(8), 2456–2469. https://doi.org/10.1083/jcb.201903066.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Senapati, S., Gnanapragassam, V. S., Moniaux, N., Momi, N., & Batra, S. K. (2012). Role of MUC4-NIDO domain in the MUC4-mediated metastasis of pancreatic cancer cells. Oncogene, 31(28), 3346–3356. https://doi.org/10.1038/onc.2011.505.

    Article  PubMed  CAS  Google Scholar 

  97. Jahan, R., Macha, M. A., Rachagani, S., Das, S., Smith, L. M., Kaur, S., & Batra, S. K. (2018). Axed MUC4 (MUC4/X) aggravates pancreatic malignant phenotype by activating integrin-beta1/FAK/ERK pathway. Biochimica et Biophysica Acta - Molecular Basis of Disease, 1864(8), 2538–2549. https://doi.org/10.1016/j.bbadis.2018.05.008.

    Article  PubMed  CAS  Google Scholar 

  98. Leir, S. H., & Harris, A. (2011). MUC6 mucin expression inhibits tumor cell invasion. Experimental Cell Research, 317(17), 2408–2419. https://doi.org/10.1016/j.yexcr.2011.07.021.

    Article  PubMed  CAS  Google Scholar 

  99. Erpenbeck, L., & Schon, M. P. (2010). Deadly allies: the fatal interplay between platelets and metastasizing cancer cells. Blood, 115(17), 3427–3436. https://doi.org/10.1182/blood-2009-10-247296.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. Hook, P., Litvinov, R. I., Kim, O. V., Xu, S., Xu, Z., Bennett, J. S., et al. (2017). Strong binding of platelet integrin alphaIIbbeta3 to fibrin clots: potential target to destabilize thrombi. Scientific Reports, 7(1), 13001. https://doi.org/10.1038/s41598-017-12615-w.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  101. Rowson-Hodel, A. R., Wald, J. H., Hatakeyama, J., O’Neal, W. K., Stonebraker, J. R., VanderVorst, K., Saldana, M. J., Borowsky, A. D., Sweeney, C., & Carraway 3rd, K. L. (2018). Membrane Mucin Muc4 promotes blood cell association with tumor cells and mediates efficient metastasis in a mouse model of breast cancer. Oncogene, 37(2), 197–207. https://doi.org/10.1038/onc.2017.327.

    Article  PubMed  CAS  Google Scholar 

  102. Bambach, S. K., & Lammermann, T. (2017). Platelets, on your marks, get set, migrate! Cell, 171(6), 1256–1258. https://doi.org/10.1016/j.cell.2017.11.026.

    Article  PubMed  CAS  Google Scholar 

  103. Joyce, J. A., & Pollard, J. W. (2009). Microenvironmental regulation of metastasis. Nature Reviews. Cancer, 9(4), 239–252. https://doi.org/10.1038/nrc2618.

    Article  PubMed  CAS  Google Scholar 

  104. McEver, R. P. (2015). Selectins: initiators of leucocyte adhesion and signalling at the vascular wall. Cardiovascular Research, 107(3), 331–339. https://doi.org/10.1093/cvr/cvv154.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  105. Kam, J. L., Regimbald, L. H., Hilgers, J. H., Hoffman, P., Krantz, M. J., Longenecker, B. M., & Hugh, J. C. (1998). MUC1 synthetic peptide inhibition of intercellular adhesion molecule-1 and MUC1 binding requires six tandem repeats. Cancer Research, 58(23), 5577–5581.

    PubMed  CAS  Google Scholar 

  106. von Mensdorff-Pouilly, S., Snijdewint, F. G., Verstraeten, A. A., Verheijen, R. H., & Kenemans, P. (2000). Human MUC1 mucin: a multifaceted glycoprotein. The International Journal of Biological Markers, 15(4), 343–356.

    Google Scholar 

  107. Park, J., Wysocki, R. W., Amoozgar, Z., Maiorino, L., Fein, M. R., Jorns, J., et al. (2016). Cancer cells induce metastasis-supporting neutrophil extracellular DNA traps. Science Translational Medicine, 8(361), 361ra138. https://doi.org/10.1126/scitranslmed.aag1711.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. Jessica Mercer for editorial contribution to the manuscript.

Funding

This authors’ work was partly supported by funding from the National Institutes of Health (P01CA217798, U01 CA210240, U01 CA200466, R01 CA206444, R01 CA228524, and R01 CA195586).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Surinder K Batra.

Ethics declarations

Conflict of interest

SKB is one of the co-founders of the Sanguine Diagnostic and Therapeutics, Inc.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ganguly, K., Rauth, S., Marimuthu, S. et al. Unraveling mucin domains in cancer and metastasis: when protectors become predators. Cancer Metastasis Rev 39, 647–659 (2020). https://doi.org/10.1007/s10555-020-09896-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10555-020-09896-5

Keywords

Navigation