Skip to main content
Log in

Empagliflozin and left ventricular diastolic function following an acute coronary syndrome in patients with type 2 diabetes

  • Original Paper
  • Published:
The International Journal of Cardiovascular Imaging Aims and scope Submit manuscript

Abstract

Sodium-glucose cotransporter 2 inhibitors can improve heart failure outcomes, however, the effects on left ventricular (LV) function remain unclear. This prospective observational study aimed to investigate whether initiating empagliflozin therapy was associated with improved LV diastolic function following an acute coronary syndrome (ACS) in patients with type 2 diabetes (T2D). Patients with ACS and T2D were identified during hospitalisation in a cardiology unit. Empagliflozin was initiated at discharge in eligible patients (i.e. HbA1c > 7%) without contraindications or precautions. Transthoracic echocardiography was performed during admission and after 3–6 months. Changes in echocardiographic parameters were compared between patients initiated on empagliflozin versus not initiated on empagliflozin (control). There were 22 patients in each group (n = 44). Baseline characteristics, medications and echocardiographic parameters were similar except HbA1c (empagliflozin: 9.8 ± 1.6% versus control: 6.6 ± 0.7%, p < 0.001). Baseline LV global longitudinal strain (GLS) (empagliflozin: − 12.4 ± 2.8 versus control: − 13.0 ± 3.6%) and ejection fraction (51.1 ± 11.3 versus 54.9 ± 10.8%) were similar. The difference in change from baseline to follow-up was significant for LV mass index (empagliflozin: − 14.1 ± 21.6 versus control: 3.6 ± 18.7 g/m2, p = 0.006), left atrial volume index (− 2.1 ± 8.1 versus 3.4 ± 9.5 ml/m2, p = 0.045), mitral valve E-wave velocity (− 0.14 ± 0.23 versus 0.03 ± 0.16 m/s, p = 0.007) and average E/e′ (− 2.1 ± 2.6 versus 0.9 ± 3.4, p = 0.002). There were no significant between-group differences in change for LV GLS, ejection fraction and volume. In patients with ACS and T2D, addition of empagliflozin to ACS therapy at discharge was associated with a reduction in LV mass and favourable changes in diastolic function parameters. Further studies are warranted to investigate these findings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availability

The datasets used during the current study are available from the corresponding author on reasonable request.

Abbreviations

SGLT2:

Sodium-glucose cotransporter 2

HF:

Heart failure

T2D:

Type 2 diabetes

CV:

Cardiovascular

HFrEF:

Heart failure with reduced ejection fraction

LV:

Left ventricular

HFpEF:

Heart failure with preserved ejection fraction

ACS:

Acute coronary syndrome

eGFR:

Estimated glomerular filtration rate

GLS:

Global longitudinal strain

References

  1. Neal B, Perkovic V, Mahaffey KW, de Zeeuw D, Fulcher G, Erondu N, Shaw W, Law G, Desai M, Matthews DR (2017) Canagliflozin and cardiovascular and renal events in type 2 diabetes. N Engl J Med 377:644–657. https://doi.org/10.1056/NEJMoa1611925

    Article  CAS  PubMed  Google Scholar 

  2. Wiviott SD, Raz I, Bonaca MP, Mosenzon O, Kato ET, Cahn A, Silverman MG, Zelniker TA, Kuder JF, Murphy SA, Bhatt DL, Leiter LA, McGuire DK, Wilding JPH, Ruff CT, Gause-Nilsson IAM, Fredriksson M, Johansson PA, Langkilde AM, Sabatine MS (2019) Dapagliflozin and cardiovascular outcomes in type 2 diabetes. N Engl J Med 380:347–357. https://doi.org/10.1056/NEJMoa1812389

    Article  CAS  PubMed  Google Scholar 

  3. Zinman B, Wanner C, Lachin JM, Fitchett D, Bluhmki E, Hantel S, Mattheus M, Devins T, Johansen OE, Woerle HJ, Broedl UC, Inzucchi SE (2015) Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. N Engl J Med 373:2117–2128. https://doi.org/10.1056/NEJMoa1504720

    Article  CAS  PubMed  Google Scholar 

  4. McMurray JJV, Solomon SD, Inzucchi SE, Kober L, Kosiborod MN, Martinez FA, Ponikowski P, Sabatine MS, Anand IS, Belohlavek J, Bohm M, Chiang CE, Chopra VK, de Boer RA, Desai AS, Diez M, Drozdz J, Dukat A, Ge J, Howlett JG, Katova T, Kitakaze M, Ljungman CEA, Merkely B, Nicolau JC, O'Meara E, Petrie MC, Vinh PN, Schou M, Tereshchenko S, Verma S, Held C, DeMets DL, Docherty KF, Jhund PS, Bengtsson O, Sjostrand M, Langkilde AM (2019) Dapagliflozin in patients with heart failure and reduced ejection fraction. N Engl J Med 381:1995–2008. https://doi.org/10.1056/NEJMoa1911303

    Article  CAS  PubMed  Google Scholar 

  5. Davies MJ, D'Alessio DA, Fradkin J, Kernan WN, Mathieu C, Mingrone G, Rossing P, Tsapas A, Wexler DJ, Buse JB (2018) Management of hyperglycemia in type 2 diabetes, 2018. A Consensus Report by the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetes Care 41:2669–2701. https://doi.org/10.2337/dci18-0033

    Article  PubMed  PubMed Central  Google Scholar 

  6. Buse JB, Wexler DJ, Tsapas A, Rossing P, Mingrone G, Mathieu C, D'Alessio DA, Davies MJ (2020) 2019 Update to: management of hyperglycemia in type 2 diabetes, 2018. A Consensus Report by the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetes Care 43:487–493. https://doi.org/10.2337/dci19-0066

    Article  CAS  PubMed  Google Scholar 

  7. Cosentino F, Grant PJ, Aboyans V, Bailey CJ, Ceriello A, Delgado V, Federici M, Filippatos G, Grobbee DE, Hansen TB, Huikuri HV, Johansson I, Juni P, Lettino M, Marx N, Mellbin LG, Ostgren CJ, Rocca B, Roffi M, Sattar N, Seferovic PM, Sousa-Uva M, Valensi P, Wheeler DC (2020) 2019 ESC Guidelines on diabetes, pre-diabetes, and cardiovascular diseases developed in collaboration with the EASD. Eur Heart J 41:255–323. https://doi.org/10.1093/eurheartj/ehz486

    Article  PubMed  Google Scholar 

  8. Lan NSR, Fegan PG, Yeap BB, Dwivedi G (2019) The effects of sodium-glucose cotransporter 2 inhibitors on left ventricular function: current evidence and future directions. ESC Heart Fail 6:927–935. https://doi.org/10.1002/ehf2.12505

    Article  PubMed  PubMed Central  Google Scholar 

  9. Dawson A, Morris AD, Struthers AD (2005) The epidemiology of left ventricular hypertrophy in type 2 diabetes mellitus. Diabetologia 48:1971–1979. https://doi.org/10.1007/s00125-005-1896-y

    Article  CAS  PubMed  Google Scholar 

  10. From AM, Scott CG, Chen HH (2010) The development of heart failure in patients with diabetes mellitus and pre-clinical diastolic dysfunction a population-based study. J Am Coll Cardiol 55:300–305. https://doi.org/10.1016/j.jacc.2009.12.003

    Article  PubMed  Google Scholar 

  11. McMurray JJ, Gerstein HC, Holman RR, Pfeffer MA (2014) Heart failure: a cardiovascular outcome in diabetes that can no longer be ignored. Lancet Diabetes Endocrinol 2:843–851. https://doi.org/10.1016/s2213-8587(14)70031-2

    Article  CAS  PubMed  Google Scholar 

  12. Verma S, Garg A, Yan AT, Gupta AK, Al-Omran M, Sabongui A, Teoh H, Mazer CD, Connelly KA (2016) Effect of empagliflozin on left ventricular mass and diastolic function in individuals with diabetes: an important clue to the EMPA-REG OUTCOME Trial? Diabetes Care 39:e212–e213. https://doi.org/10.2337/dc16-1312

    Article  PubMed  Google Scholar 

  13. Matsutani D, Sakamoto M, Kayama Y, Takeda N, Horiuchi R, Utsunomiya K (2018) Effect of canagliflozin on left ventricular diastolic function in patients with type 2 diabetes. Cardiovasc Diabetol 17:73. https://doi.org/10.1186/s12933-018-0717-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Soga F, Tanaka H, Tatsumi K, Mochizuki Y, Sano H, Toki H, Matsumoto K, Shite J, Takaoka H, Doi T, Hirata KI (2018) Impact of dapagliflozin on left ventricular diastolic function of patients with type 2 diabetic mellitus with chronic heart failure. Cardiovasc Diabetol 17:132. https://doi.org/10.1186/s12933-018-0775-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Bhatt AS, Ambrosy AP, Velazquez EJ (2017) Adverse remodeling and reverse remodeling after myocardial infarction. Curr Cardiol Rep 19:71. https://doi.org/10.1007/s11886-017-0876-4

    Article  PubMed  Google Scholar 

  16. Moller JE, Whalley GA, Dini FL, Doughty RN, Gamble GD, Klein AL, Quintana M, Yu CM (2008) Independent prognostic importance of a restrictive left ventricular filling pattern after myocardial infarction: an individual patient meta-analysis: Meta-Analysis Research Group in Echocardiography acute myocardial infarction. Circulation 117:2591–2598. https://doi.org/10.1161/circulationaha.107.738625

    Article  CAS  PubMed  Google Scholar 

  17. Moller JE, Sondergaard E, Poulsen SH, Egstrup K (2000) Pseudonormal and restrictive filling patterns predict left ventricular dilation and cardiac death after a first myocardial infarction: a serial color M-mode Doppler echocardiographic study. J Am Coll Cardiol 36:1841–1846. https://doi.org/10.1016/s0735-1097(00)00965-7

    Article  CAS  PubMed  Google Scholar 

  18. Somaratne JB, Whalley GA, Gamble GD, Doughty RN (2007) Restrictive filling pattern is a powerful predictor of heart failure events postacute myocardial infarction and in established heart failure: a literature-based meta-analysis. J Card Fail 13:346–352. https://doi.org/10.1016/j.cardfail.2007.01.010

    Article  PubMed  Google Scholar 

  19. Aronson D, Musallam A, Lessick J, Dabbah S, Carasso S, Hammerman H, Reisner S, Agmon Y, Mutlak D (2010) Impact of diastolic dysfunction on the development of heart failure in diabetic patients after acute myocardial infarction. Circ Heart Fail 3:125–131. https://doi.org/10.1161/circheartfailure.109.877340

    Article  CAS  PubMed  Google Scholar 

  20. Roffi M, Patrono C, Collet JP, Mueller C, Valgimigli M, Andreotti F, Bax JJ, Borger MA, Brotons C, Chew DP, Gencer B, Hasenfuss G, Kjeldsen K, Lancellotti P, Landmesser U, Mehilli J, Mukherjee D, Storey RF, Windecker S (2016) 2015 ESC Guidelines for the management of acute coronary syndromes in patients presenting without persistent ST-segment elevation: Task Force for the Management of Acute Coronary Syndromes in Patients Presenting without Persistent ST-Segment Elevation of the European Society of Cardiology (ESC). Eur Heart J 37:267–315. https://doi.org/10.1093/eurheartj/ehv320

    Article  CAS  PubMed  Google Scholar 

  21. (2020) 2. Classification and Diagnosis of Diabetes: Standards of Medical Care in Diabetes-2020. Diabetes Care 43:S14-s31. https://doi.org/https://doi.org/10.2337/dc20-S002

  22. Lan NSR, Fegan PG, Rankin JM, Bell DA, Watts GF, Yeap BB (2019) Implementing simple algorithms to improve glucose and lipid management in people with diabetes and acute coronary syndrome. Diabet Med 36:1643–1651. https://doi.org/10.1111/dme.14095

    Article  CAS  PubMed  Google Scholar 

  23. Mitchell C, Rahko PS, Blauwet LA, Canaday B, Finstuen JA, Foster MC, Horton K, Ogunyankin KO, Palma RA, Velazquez EJ (2019) Guidelines for performing a comprehensive transthoracic echocardiographic examination in adults: recommendations from the American Society of Echocardiography. J Am Soc Echocardiogr 32:1–64. https://doi.org/10.1016/j.echo.2018.06.004

    Article  PubMed  Google Scholar 

  24. Lang RM, Badano LP, Mor-Avi V, Afilalo J, Armstrong A, Ernande L, Flachskampf FA, Foster E, Goldstein SA, Kuznetsova T, Lancellotti P, Muraru D, Picard MH, Rietzschel ER, Rudski L, Spencer KT, Tsang W, Voigt JU (2015) Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J Am Soc Echocardiogr 28:1–39.e14. https://doi.org/10.1016/j.echo.2014.10.003

    Article  PubMed  Google Scholar 

  25. Nagueh SF, Smiseth OA, Appleton CP, Byrd BF 3rd, Dokainish H, Edvardsen T, Flachskampf FA, Gillebert TC, Klein AL, Lancellotti P, Marino P, Oh JK, Popescu BA, Waggoner AD (2016) Recommendations for the evaluation of left ventricular diastolic function by echocardiography: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J Am Soc Echocardiogr 29:277–314. https://doi.org/10.1016/j.echo.2016.01.011

    Article  PubMed  Google Scholar 

  26. Tanaka H, Soga F, Tatsumi K, Mochizuki Y, Sano H, Toki H, Matsumoto K, Shite J, Takaoka H, Doi T, Hirata KI (2020) Positive effect of dapagliflozin on left ventricular longitudinal function for type 2 diabetic mellitus patients with chronic heart failure. Cardiovasc Diabetol 19:6. https://doi.org/10.1186/s12933-019-0985-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Otagaki M, Matsumura K, Kin H, Fujii K, Shibutani H, Matsumoto H, Takahashi H, Park H, Yamamoto Y, Sugiura T, Shiojima I (2019) Effect of tofogliflozin on systolic and diastolic cardiac function in type 2 diabetic patients. Cardiovasc Drugs Ther 33:435–442. https://doi.org/10.1007/s10557-019-06892-y

    Article  CAS  PubMed  Google Scholar 

  28. Tochiya M, Makino H, Tamanaha T, Matsuo M, Hishida A, Koezuka R, Ohata Y, Tomita T, Son C, Miyamoto Y, Yasuda S, Hosoda K (2020) Effect of tofogliflozin on cardiac and vascular endothelial function in patients with type 2 diabetes and heart diseases: a pilot study. J Diabetes Invest 11:400–404. https://doi.org/10.1111/jdi.13122

    Article  CAS  Google Scholar 

  29. Verma S, Mazer CD, Yan AT, Mason T, Garg V, Teoh H, Zuo F, Quan A, Farkouh ME, Fitchett DH, Goodman SG, Goldenberg RM, Al-Omran M, Gilbert RE, Bhatt DL, Leiter LA, Juni P, Zinman B, Connelly KA (2019) Effect of empagliflozin on left ventricular mass in patients with type 2 diabetes mellitus and coronary artery disease: the EMPA-HEART CardioLink-6 randomized clinical trial. Circulation 140:1693–1702. https://doi.org/10.1161/circulationaha.119.042375

    Article  PubMed  Google Scholar 

  30. Bami K, Gandhi S, Leong-Poi H, Yan AT, Ho E, Zahrani M, Garg V, Zuo F, Teoh H, Quan A, Leiter LA, Gilbert RE, Zinman B, Thorpe KE, Juni P, Mazer CD, Verma S, Ong G, Connelly KA (2020) Effects of empagliflozin on left ventricular remodeling in patients with type 2 diabetes and coronary artery disease: echocardiographic substudy of the EMPA-HEART CardioLink-6 randomized clinical trial. J Am Soc Echocardiogr. https://doi.org/10.1016/j.echo.2020.02.005

    Article  PubMed  Google Scholar 

  31. Zelniker TA, Wiviott SD, Raz I, Im K, Goodrich EL, Bonaca MP, Mosenzon O, Kato ET, Cahn A, Furtado RHM, Bhatt DL, Leiter LA, McGuire DK, Wilding JPH, Sabatine MS (2019) SGLT2 inhibitors for primary and secondary prevention of cardiovascular and renal outcomes in type 2 diabetes: a systematic review and meta-analysis of cardiovascular outcome trials. Lancet 393:31–39. https://doi.org/10.1016/s0140-6736(18)32590-x

    Article  CAS  PubMed  Google Scholar 

  32. Sattar N, McLaren J, Kristensen SL, Preiss D, McMurray JJ (2016) SGLT2 Inhibition and cardiovascular events: why did EMPA-REG Outcomes surprise and what were the likely mechanisms? Diabetologia 59:1333–1339. https://doi.org/10.1007/s00125-016-3956-x

    Article  PubMed  PubMed Central  Google Scholar 

  33. Inzucchi SE, Zinman B, Fitchett D, Wanner C, Ferrannini E, Schumacher M, Schmoor C, Ohneberg K, Johansen OE, George JT, Hantel S, Bluhmki E, Lachin JM (2018) How does empagliflozin reduce cardiovascular mortality? Insights from a mediation analysis of the EMPA-REG OUTCOME Trial. Diabetes Care 41:356–363. https://doi.org/10.2337/dc17-1096

    Article  CAS  PubMed  Google Scholar 

  34. Li J, Woodward M, Perkovic V, Figtree GA, Heerspink HJL, Mahaffey KW, de Zeeuw D, Vercruysse F, Shaw W, Matthews DR, Neal B (2020) Mediators of the effects of canagliflozin on heart failure in patients with type 2 diabetes. JACC Heart Fail 8:57–66. https://doi.org/10.1016/j.jchf.2019.08.004

    Article  PubMed  Google Scholar 

  35. Ferrannini E, Mark M, Mayoux E (2016) CV protection in the EMPA-REG OUTCOME Trial: A "Thrifty Substrate" hypothesis. Diabetes Care 39:1108–1114. https://doi.org/10.2337/dc16-0330

    Article  PubMed  Google Scholar 

  36. Packer M, Anker SD, Butler J, Filippatos G, Zannad F (2017) Effects of sodium-glucose cotransporter 2 inhibitors for the treatment of patients with heart failure: proposal of a novel mechanism of action. JAMA Cardiol 2:1025–1029. https://doi.org/10.1001/jamacardio.2017.2275

    Article  PubMed  Google Scholar 

  37. Chilton R, Tikkanen I, Cannon CP, Crowe S, Woerle HJ, Broedl UC, Johansen OE (2015) Effects of empagliflozin on blood pressure and markers of arterial stiffness and vascular resistance in patients with type 2 diabetes. Diabetes Obes Metab 17:1180–1193. https://doi.org/10.1111/dom.12572

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Sano M (2018) A new class of drugs for heart failure: SGLT2 inhibitors reduce sympathetic overactivity. J Cardiol 71:471–476. https://doi.org/10.1016/j.jjcc.2017.12.004

    Article  PubMed  Google Scholar 

  39. Brieger D, D'Souza M, Huyn K, Weaver JC, Kritharides L (2019) Intensive lipid-lowering therapy in the 12 months after an acute coronary syndrome in Australia: an observational analysis. Med J Aust 210:80–85. https://doi.org/10.5694/mja2.12035

    Article  PubMed  Google Scholar 

Download references

Funding

NSRL was supported by a WA Health Research Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nick S. R. Lan.

Ethics declarations

Conflicts of interest

NSRL has received research funding and speaker honoraria from Sanofi as part of a Clinical Fellowship and conference support from Boehringer Ingelheim. BBY has received speaker honoraria and conference support from Sanofi, MSD, Boehringer Ingelheim, Lilly, AstraZeneca, Novo Nordisk and Takeda, and has participated on advisory committees for Sanofi, Lilly and Novartis. PGF has received speaker honoraria and conference support from Sanofi, MSD, Boehringer Ingelheim, Lilly, AstraZeneca and Novo Nordisk. GD reports 3 paid lectures from AstraZeneca, Pfizer, and Amgen not related to the topic in the manuscript. GD provides consultancy services to Artrya Pty Ltd. There was no pharmaceutical company involvement in the planning, conduct or publication of this research. No conflicts of interest to declare for other authors.

Ethical approval

Ethical approval was obtained from the Human Research Ethics Committee (RGS-3023). Participants provided written informed consent and the study was conducted according to the principles of the Declaration of Helsinki.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 30 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lan, N.S.R., Yeap, B.B., Fegan, P.G. et al. Empagliflozin and left ventricular diastolic function following an acute coronary syndrome in patients with type 2 diabetes. Int J Cardiovasc Imaging 37, 517–527 (2021). https://doi.org/10.1007/s10554-020-02034-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10554-020-02034-w

Keywords

Navigation