Skip to main content
Log in

Determination of cardiac output with dynamic contrast-enhanced computed tomography

  • Original Paper
  • Published:
The International Journal of Cardiovascular Imaging Aims and scope Submit manuscript

Abstract

Cardiac output (CO) is an important diagnostic and prognostic factor in the haemodynamic evaluation of patients. The gold standard for CO measurement, thermodilution, requires an invasive right-heart catheterisation (RHC). In this pilot study we aimed to determine the accuracy of non-invasive CO determination from dynamic contrast-enhanced computed tomography (CT) compared to thermodilution. Patients who underwent diagnostic or follow-up RHC due to suspected or known pulmonary vascular disease at our department and required a thoracic CT between June 2011 and August 2012 were included. CO was determined from CT attenuation-time curves in the pulmonary artery and the ascending aorta using a dynamic contrast-enhanced CT sequence. CO determined in N = 18 patients by dynamic CT in the pulmonary artery was in very good agreement with thermodilution data (r = 0.84). Bland–Altman analysis showed a systematic overestimation of 0.7 ± 0.6 l/min compared to thermodilution. Data from the ascending aorta also showed a good correlation, but with a larger scattering of the values. The average effective dose for the dynamic investigation was 1.2 ± 0.7 mSv. CO determined with dynamic contrast-enhanced CT in the main pulmonary artery reliably predicts the values obtained by thermodilution during RHC. This non-invasive technique might provide an alternative for repeated invasive right-heart catheter investigations in the follow-up of pulmonary arterial hypertension patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Hoeper M, Tongers J, Leppert A, Baus S, Maier R, Lotz J (2001) Evaluation of right ventricular performance with a right ventricular ejection fraction thermodilution catheter and MRI in patients with pulmonary hypertension. Chest 120:502–507

    Article  CAS  PubMed  Google Scholar 

  2. Sitbon O, Humbert M, Nunes H, Parent F, Garcia G, Herve P, Rainisio M, Simonneau G (2002) Long-term intravenous epoprostenol infusion in primary pulmonary hypertension—prognostic factors and survival. J Am Coll Cardiol 40:780–788

    Article  CAS  PubMed  Google Scholar 

  3. Galie N, Hoeper MM, Humbert M, Torbicki A, Vachiery J, Barbera JA, Beghetti M, Corris P, Gaine S, Gibbs JS, Gomez-Sanchez MA, Jondeau G, Klepetko W, Opitz C, Peacock A, Rubin L, Zellweger M, Simonneau G (2009) Guidelines for the diagnosis and treatment of pulmonary hypertension. Eur Resp J 34:1219–1263

    Article  CAS  Google Scholar 

  4. Ganz W, Donoso R, Marcus HS, Forreste JS, Swan HJC (1971) New technique for measurement of cardiac output by thermodilution in man. Am J Cardiol 27:392–396

    Article  CAS  PubMed  Google Scholar 

  5. Hillis LD, Firth BG, Winniford MD (1985) Analysis of factors affecting the variability of Fick versus indicator dilution measurements of cardiac-output. Am J Cardiol 56:764–768

    Article  CAS  PubMed  Google Scholar 

  6. Wong D, Tremper K, Stemmer E, O’Connor D, Wilbur S, Zaccari J, Reeves C, Weidoff P, Trujillo R (1990) Noninvasive cardiac-output—simultaneous comparison of 2 different methods with thermodilution. Anesthesiology 72:784–792

    Article  CAS  PubMed  Google Scholar 

  7. Meyer S, Todd D, Wright I, Gortner L, Reynolds G (2008) Review article: non-invasive assessment of cardiac output with portable continuous-wave Doppler ultrasound. Emerg Med Australas 20:201–208

    Article  PubMed  Google Scholar 

  8. Fisher MR, Forfia PR, Chamera E, Housten-Harris T, Champion HC, Girgis RE, Corretti MC, Hassoun PM (2009) Accuracy of Doppler echocardiography in the hemodynamic assessment of pulmonary hypertension. Am J Respir Crit Care Med 179:615–621

    Article  PubMed  Google Scholar 

  9. Funk DJ, Moretti EW, Gan TJ (2009) Minimally invasive cardiac output monitoring in the perioperative setting. Anesth Analg 108:887–897

    Article  PubMed  Google Scholar 

  10. Porhomayon J, El-Solh A, Papadakos P, Nader ND (2012) Cardiac output monitoring devices: an analytic review. Intern Emerg Med 7:163–171

    Article  PubMed  Google Scholar 

  11. Fortin J, Habenbacher W, Heller A, Hacker A, Gruellenberger R, Innerhofer J, Passath H, Wagner C, Haitchi G, Flotzinger D, Pacher R, Wach P (2006) Non-invasive beat-to-beat cardiac output monitoring by an improved method of transthoracic bioimpedance measurement. Comput Biol Med 36:1185–1203

    Article  CAS  PubMed  Google Scholar 

  12. Petter H, Erik A, Bjorn E, Goran R (2011) Measurement of cardiac output with non-invasive Aesculon (R) impedance versus thermodilution. Clin Physiol Funct Imaging 31:39–47

    Article  PubMed  Google Scholar 

  13. Hoeper M, Maier R, Tongers J, Niedermeyer J, Hohlfeld J, Hamm M, Fabel H (1999) Determination of cardiac output by the Fick method, thermodilution, and acetylene rebreathing in pulmonary hypertension. Am J Respir Crit Care Med 160:535–541

    Article  CAS  PubMed  Google Scholar 

  14. Gabrielsen A, Videbaek R, Schou M, Damgaard M, Kastrup J, Norsk P (2002) Non-invasive measurement of cardiac output in heart failure patients using a new foreign gas rebreathing technique. Clin Sci 102:247–252

    Article  PubMed  Google Scholar 

  15. McLure LER, Brown A, Lee WN, Church AC, Peacock AJ, Johnson MK (2011) Non-invasive stroke volume measurement by cardiac magnetic resonance imaging and inert gas rebreathing in pulmonary hypertension. Clin Physiol Funct Imaging 31:221–226

    Article  PubMed  Google Scholar 

  16. Firmin DN, Nayler GL, Klipstein RH, Underwood SR, Rees RSO, Longmore DB (1987) Invivo validation of MR velocity imaging. J Comput Assist Tomogr 11:751–756

    Article  CAS  PubMed  Google Scholar 

  17. Kondo C, Caputo GR, Semelka R, Foster E, Shimakawa A, Higgins CB (1991) Right and left-ventricular stroke volume measurements with velocity-encoded cine MR imaging—invitro and invivo validation. Am J Roentgenol 157:9–16

    Article  CAS  Google Scholar 

  18. Hundley WG, Li HF, Hillis LD, Meshack BM, Lange RA, Willard JE, Landau C, Peshock RM (1995) Quantitation of cardiac-output with velocity-encoded, phase-difference magnetic-resonance-imaging. Am J Cardiol 75:1250–1255

    Article  CAS  PubMed  Google Scholar 

  19. Ketova TN, Fedorov AY, Gulyaev VM, Borodin OY, Usov VY (2005) Estimation of cardiac output from dynamic contrast multispiral tomographic data. Vestn Rentgenol Radiol 6:32–36

    PubMed  Google Scholar 

  20. Ludman P, Coats A, Poolewilson P, Rees R (1993) Measurement accuracy of cardiac-output in humans— indicator-dilution technique versus geometric analysis by ultrafast computed-tomography. J Am Coll Cardiol 21:1482–1489

    Article  CAS  PubMed  Google Scholar 

  21. Mahnken A, Klotz E, Hennemuth A, Jung B, Koos R, Wildberger J, Gunther R (2003) Measurement of cardiac output from a test-bolus injection in multislice computed tomography. Eur Radiol 13:2498–2504

    Article  PubMed  Google Scholar 

  22. Abel E, Jankowski A, Pison C, Bosson JL, Bouvaist H, Ferretti GR (2012) Pulmonary artery and right ventricle assessment in pulmonary hypertension: correlation between functional parameters of ECG-gated CT and right-side heart catheterization. Acta Radiol 53:720–727

    Article  PubMed  Google Scholar 

  23. Herfkens R, Axel L, Lipton M, Napel S, Berninger W, Redington R (1982) Measurement of cardiac-output by computed transmission tomography. Invest Radiol 17:550–553

    Article  CAS  PubMed  Google Scholar 

  24. Garrett J, Lanzer P, Jaschke W, Botvinick E, Sievers R, Higgins C, Lipton M (1985) Measurement of cardiac-output by cine computed-tomography. Am J Cardiol 56:657–661

    Article  CAS  PubMed  Google Scholar 

  25. Mahnken A, Henzler D, Klotz E, Hennemuth A, Wildberger J, Gunther R (2004) Determination of cardiac output with multislice spiral computed tomography: a validation study. Invest Radiol 39:451–454

    Article  PubMed  Google Scholar 

  26. Raman SV, Tran T, Simonetti OP, Sun B (2009) Dynamic computed tomography to determine cardiac output in patients with left ventricular assist devices. J Thorac Cardiovasc Surg 137:1213–1217

    Article  PubMed  Google Scholar 

  27. Evans R (1959) 2 comments on the estimation of blood flow and central volume from dye-dilution curves. J Appl Physiol 14:457

    CAS  PubMed  Google Scholar 

  28. Thompson H, Whalen R, Stramer C, McIntosh H (1964) Indicator transit time considered as gamma variate. Circ Res 14:502–515

    Article  PubMed  Google Scholar 

  29. Madsen M (1992) A simplified formulation of the gamma variate function. Phys Med Biol 37:1597–1600

    Article  Google Scholar 

  30. Zierler K (1962) Theoretical basis of indicator-dilution methods for measuring flow and volume. Circ Res 10:393–407

    Article  Google Scholar 

  31. Du Bois D, Du Bois E (1916) A formula to estimate the approximate surface area if height and weight be known. Arch Intern Med 17:863–871

    Article  Google Scholar 

  32. Bland J, Altman D (1999) Measuring agreement in method comparison studies. Stat Methods Med Res 8:135–160

    Article  CAS  PubMed  Google Scholar 

  33. Huda W, Magill D, He W (2011) CT effective dose per dose length product using ICRP 103 weighting factors. Med Phys 38:1261–1265

    Article  PubMed  Google Scholar 

  34. International Commission on Radiological Protection ICRP (2007) The 2007 recommendations of the international commission on radiological protection. ICRP publication 103. Ann ICRP 37:1–332

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank Wolfgang Loidl for his help in setting up the examination protocol and Dr. László Fóris for his comments on the manuscript. This study was financed by the Ludwig Boltzmann Institute for Lung Vascular Research. This study is registered at ClinicalTrials.gov under the identifier NCT01607489.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zoltán Bálint.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 1075 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pienn, M., Kovacs, G., Tscherner, M. et al. Determination of cardiac output with dynamic contrast-enhanced computed tomography. Int J Cardiovasc Imaging 29, 1871–1878 (2013). https://doi.org/10.1007/s10554-013-0279-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10554-013-0279-6

Keywords

Navigation