Skip to main content
Log in

Measurement of cardiac output from a test-bolus injection in multislice computed tomography

  • Cardiac
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

The aim of this study was to assess the feasibility of non-invasive determination of cardiac function from test-bolus data in multislice spiral computed tomography (MSCT). In 25 patients enhancement data gathered from a standardized test-bolus injection were analyzed. The test-bolus examination was performed prior to a retrospectively ECG-gated MSCT of the heart. A time–attenuation curve was obtained in the ascending aorta at the level of the pulmonary arteries. A gamma variate fit was applied to the curve in order to exclude recirculation and get pure first-pass data. Using the known amount of iodine injected, cardiac output (CO), and stroke volume (SV) were determined from integration of the fitted contrast enhancement curve using a reformation of the Stewart-Hamilton equation. Results were compared with CO and SV calculated from the geometric analysis of the retrospectively gated MSCT data using the ARGUS Software (Siemens, Forchheim, Germany). The CO and SV determined from test-bolus analysis and from geometric analysis correlated well with Pearson's correlation coefficients of 0.87 and 0.88, respectively. The standard deviation of the difference between both methods was 0.51 l/min for CO (8.6%) and 11.0 ml for SV (12.3%). Non-invasive quantification of CO seems to be feasible from a standard test-bolus injection. It provides valuable information on cardiac function without additional radiation or application of contrast material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1a, b.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

References

  1. Klingenbeck-Regn K, Schaller S, Flohr T, Ohnesorge B, Kopp AF, Baum U (1999) Subsecond multi-slice computed tomography: basics and applications. Eur J Radiol 31:110–124

    Article  CAS  Google Scholar 

  2. Ohnesorge B, Flohr T, Becker C, Kopp AF, Schoepf UJ, Baum U, Knez A, Klingenbeck-Regn K, Reiser MF (2000) Cardiac imaging by means of electrocardiographically multi-section spiral CT: initial experience. Radiology 217:564–571

    Article  CAS  Google Scholar 

  3. Rodenwaldt J (2003) Multi-slice computed tomography of the coronary arteries. Eur Radiol 13:748–757

    PubMed  Google Scholar 

  4. Flohr T, Prokop M, Becker C, Schoepf UJ, Kopp AF, White RD, Schaller S, Ohnesorge B (2002) A retrospectively ECG-gated multi-slice spiral CT scan and reconstruction technique with suppression of heart pulsation artifacts for cardio-thoracic imaging with extended volume coverage. Eur Radiol 12:1497–1503

    Article  CAS  Google Scholar 

  5. Juergens KU, Grude M, Fallenberg EM, Opitz C, Wichter T, Heindel W, Fischbach R (2002) Using ECG-gated multi-detector CT to evaluate global left ventricular myocardial function in patients with coronary artery disease. Am J Roentgenol 179:1545–1550

    Article  Google Scholar 

  6. Mahnken AH, Spuntrup E, Wildberger JE, Heuschmid M, Niethammer M, Sinha AM, Flohr T, Bücker A, Gunther RW (2003) Quantification of cardiac function with multi-slice spiral CT using retrospective EKG-gating: comparison with MRI. Fortschr Röntgenstr 175:83–88

    Article  CAS  Google Scholar 

  7. Halliburton SS, Petersilka M, Schvartzman PR, Obuchowski N, White RD (2003) Evaluation of left ventricular dysfunction using multiphasic reconstructions of coronary multi-slice computed tomography data in patients with chronic ischemic heart disease: validation against cine magnetic resonance imaging. Int J Cardiovasc Imaging 19:73–83

    Article  Google Scholar 

  8. Fleischmann D, Rubin GD, Bankier AA, Hittmair K (2000) Improved uniformity of aortic enhancement with customized contrast-medium injection protocols at CT angiography. Radiology 214:363–371

    Article  CAS  Google Scholar 

  9. Kaatee R, van Leeuwen MS, de Lange EE, Wilting JE, Beek FJ, Beutler JJ, Mali WP (1998) Spiral CT angiography of the renal arteries: Should a scan delay based on a test-bolus injection or a fixed-scan delay be used to obtain maximum enhancement of the vessels? J Comput Assist Tomogr 22:541–547

    Article  CAS  Google Scholar 

  10. Van Hoe L, Marchal G, Baert AL, Gryspeerdt S, Mertens L (1995) Determination of scan delay time in spiral CT angiography: utility of a test-bolus injection. J Comput Assist Tomogr 19:216–220

    Article  Google Scholar 

  11. Herfkens RJ, Axel L, Lipton MJ, Napel S, Berninger W, Redington R (1982) Measurement of cardiac output by computed transmission tomography. Invest Radiol 17:550–553

    Article  CAS  Google Scholar 

  12. Garrett JS, Lanzer P, Jaschke W, Botvinick E, Sievers R, Higgins CB, Lipton MJ (1985) Measurement of cardiac output by cine computed tomography. Am J Cardiol 56:657–661

    Article  CAS  Google Scholar 

  13. Wolfkiel CJ, Ferguson JL, Chomka EV, Law WR, Brundage BH (1986) Determination of cardiac output by ultrafast computed tomography. Am J Physiol Imaging 1:117–123

    CAS  PubMed  Google Scholar 

  14. Stewart GN (1897) Research on the circulation time and the influence which affects it. IV. The output of the heart. J Physiol 2:159–183

    Article  Google Scholar 

  15. Hamilton WT, Moore JW, Kinsman JM, Spurling RG (1932) Studies on the circulation: further analysis of the injection method and of changes in hemodynamics under physiological and pathological conditions. Am J Physiol 99:534–551

    Article  CAS  Google Scholar 

  16. Ludman PF, Coats AJ, Poole-Wilson PA, Rees RS (1993) Measurement accuracy of cardiac output in humans: indicator dilution technique vs geometric analysis by ultrafast computed tomography. J Am Coll Cardiol 21:1482–1489

    Article  CAS  Google Scholar 

  17. Kalender WA, Schmidt B, Zankl M, Schmidt M (1999) A PC program for estimating organ dose and effective dose values in computed tomography. Eur Radiol 9:552–562

    Article  Google Scholar 

  18. Thompson BH, Stanford W (1994) Evaluation of cardiac function with ultrafast computed tomography. Radiol Clin North Am 32:537–551

    CAS  PubMed  Google Scholar 

  19. Flohr T, Ohnesorge B (2001) Heart rate adaptive optimization of spatial and temporal resolution for electrocardiogram-gated multi-slice spiral CT of the heart. J Comput Assist Tomogr 25:907–923

    Article  CAS  Google Scholar 

  20. American Heart Association, American College of Cardiology, Society of Nuclear Medicine (1992) Standardization of cardiac tomographic imaging. From the Committee on Advanced Cardiac Imaging and Technology, Council on Clinical Cardiology, American Heart Association; Cardiovascular Imaging Committee, American College of Cardiology; and Board of Directors, Cardiovascular Council, Society of Nuclear Medicine. Circulation 86:338–339

    Article  Google Scholar 

  21. Schalla S, Nagel E, Lehmkuhl H, Klein C, Bornstedt A, Schnackenburg B, Schneider U, Fleck E (2001) Comparison of magnetic resonance real-time imaging of left ventricular function with conventional magnetic resonance imaging and echocardiography. Am J Cardiol 87:95–99

    Article  CAS  Google Scholar 

  22. Moon JC, Lorenz CH, Francis JM, Smith GC, Pennell DJ (2002) Breath-hold FLASH and FISP cardiovascular MR imaging: left ventricular volume differences and reproducibility. Radiology 223:789–797

    Article  Google Scholar 

  23. Thompson HK, Starmer CF, Whalen RE, McIntosh HD (1963) Indicator transit time considered as gamma variate. Circ Res 14:502–515

    Article  Google Scholar 

  24. Cademartiri F, van der Lugt A, Luccichenti G, Pavone P, Krestin GP (2002) Parameters affecting bolus geometry in CTA: a review. J Comput Assist Tomogr 26:598–607

    Article  Google Scholar 

  25. Bland JM, Altman DG (1986) Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1:307–310

    Article  CAS  Google Scholar 

  26. International Commission on Radiation Protection (1991) 1990 Recommendations of the International Commission on Radiation Protection. ICRP publication no. 60. Pergamon, Oxford

  27. Kaminaga T, Naito H, Takamiya M, Nishimura T (1994) Quantitative evaluation of mitral regurgitation with ultrafast CT. J Comput Assist Tomogr 18:239–242

    Article  CAS  Google Scholar 

  28. Botero M, Lobato EB (2001) Advances in noninvasive cardiac output monitoring: an update. J Cardiothorac Vasc Anesth 15:631–640

    Article  CAS  Google Scholar 

  29. Baik HK, Budoff MJ, Lane KL, Bakhsheshi H, Brundage BH (2000) Accurate measures of left ventricular ejection fraction using electron-beam tomography: a comparison with radionuclide angiography, and cine angiography. Int J Card Imaging 16:391–398

    Article  CAS  Google Scholar 

  30. Juergens KU, Fischbach R, Grude M, Wichter T, Fallenberg EM, Opitz C, Heindel WL (2002) Evaluation of left ventricular myocardial function by retrospectively ECG-gated multi-slice spiral CT in comparison to cine magnetic resonance imaging. Eur Radiol 12 (Suppl 1):S191

    Google Scholar 

  31. Platt JF, Reige KA, Ellis JH (1999) Aortic enhancement during abdominal CT angiography: correlations with test injections, flow rates, and patient demographics. Am J Roentgenol 172:53–56

    Article  CAS  Google Scholar 

  32. Hittmair K, Fleischmann D (2001) Accuracy of predicting and controlling time-dependent aortic enhancement from a test-bolus injection. J Comput Assist Tomogr 25:287–294

    Article  CAS  Google Scholar 

  33. Mancini GB, Bloomquist JN, Bhargava V, Stein JB, Lew W, Slutsky RA, Shabetai R, Higgins CB (1983) Hemodynamic and electrocardiographic effects in man of a new nonionic contrast agent (Iohexol): advantages over standard ionic agents. Am J Cardiol 51:1218–1222

    Article  CAS  Google Scholar 

  34. Bettmann MA, Higgins CB (1985) Comparison of an ionic with a nonionic contrast agent for cardiac angiography: results of a multicenter trial. Invest Radiol 20:S70–S74

    Article  CAS  Google Scholar 

  35. Kopp AF, Küttner A, Heuschmid M, Schröder S, Ohnesorge B, Claussen CD (2002) Multidetector-row CT cardiac imaging with 4 and 16 slices for coronary CTA and imaging of atherosclerotic plaques. Eur Radiol 12 (Suppl 2):S17–S24

    Article  Google Scholar 

  36. Peshock RM, Willett DL, Sayad DE, Hundley WG, Chwialkowski MC, Clarke GD, Parkey RW (1996) Quantitative MR imaging of the heart. Magn Reson Imaging Clin N Am 4:287–305

    CAS  PubMed  Google Scholar 

  37. Boyd DP, Lipton MJ (1983) Cardiac computed tomography. Proc IEEE Nucl Sci 71:298–307

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas H. Mahnken.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mahnken, A.H., Klotz, E., Hennemuth, A. et al. Measurement of cardiac output from a test-bolus injection in multislice computed tomography. Eur Radiol 13, 2498–2504 (2003). https://doi.org/10.1007/s00330-003-2054-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-003-2054-x

Keywords

Navigation