Skip to main content
Log in

Comparison of global left ventricular function using 20 phases with 10-phase reconstructions in multidetector-row computed tomography

  • Original Paper
  • Published:
The International Journal of Cardiovascular Imaging Aims and scope Submit manuscript

Abstract

To compare the measurement of global left-ventricular (LV) function parameters of 64-slice multidetector-row computed tomography (MDCT) between 20- and 10-reconstruction phases. Fifty five patients with suspected or known coronary artery disease underwent 64-slice MDCT. LV end-diastolic volume (EDV), end-systolic volume (ESV), stroke volume (SV), and ejection fraction (EF) were measured from MDCT data sets using threshold-based volume segmentation and reconstruction at every 5% (20 phases) and 10% (10 phases) step through the R-R interval. These global functional parameters were compared to those obtained via two-dimensional transthoracic echocardiography (2D-TTE), considering the reference standard. The required time for CT data analysis was checked. Agreement for parameters of LV global function was determined using Pearson’s correlation coefficient (r) and Bland–Altman analysis. LV volumes (EDV−5% 87.5 ± 17.1 ml, EDV−10% 87.7 ± 16.3 ml; ESV−5% 32.4 ± 10.6 ml, ESV−10% 31.9 ± 9.9 ml; SV−5% 55.1 ± 10.5 ml, SV−10% 55.8 ± 9.9 ml; mean ± SD) and EF (EF−5% 63.4 ± 6.2%, EF−10% 63.9 ± 5.8%) did not differ significantly between the 20- and 10 phase reconstructions, and evidenced good to excellent correlation (r = 0.786–0.896, all P < 0.001) with the 2D-TTE results. The mean required time for CT data analysis in the 20- and 10 phase reconstructions were 15.5 ± 4.0 and 7.3 ± 2.5 min. Within MDCT, using 10-phase image reconstruction is sufficient to evaluate LV volumes and EF, and is also more time-effective than 20-phase reconstruction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

ECG:

Electrocardiography

HR:

Heart rate

LV:

Left ventricle

LVEDV:

Left ventricular end-diastolic volume

LVEF:

Left ventricular ejection fraction

LVESV:

Left ventricular end-systolic volume

LVSV:

Left ventricular stroke volume

MDCT:

Multidetector-row computed tomography

MRI:

Magnetic resonance imaging

2D:

Two-dimensional

2D-TTE:

Two-dimensional transthoracic echocardiography

3D:

Three-dimensional

References

  1. Gerber TC, Behrenbeck T, Allison T et al (1999) Comparison of measurement of left ventricular ejection fraction by Tc-99 m sestamibi first-pass angiography with electron beam computed tomography in patients with anterior wall acute myocardial infarction. Am J Cardiol 83:1022–1026

    Article  PubMed  CAS  Google Scholar 

  2. Schocken DD, Arrieta MI, Leaverton PE et al (1992) Prevalence and mortality rate of congestive heart failure in the United States. J Am Coll Cardiol 20:301–306

    Article  PubMed  CAS  Google Scholar 

  3. White HD, Norris RM, Brown MA et al (1987) Left ventricular end-systolic volume as the major determinant of survival after recovery from myocardial infarction. Circulation 76:44–51

    Article  PubMed  CAS  Google Scholar 

  4. Orakzai SH, Orakzai RH, Nasir K et al (2006) Assessment of cardiac function using multidetector row computed tomography. J Comput Assist Tomogr 30:555–563

    Article  PubMed  Google Scholar 

  5. Juergens KU, Fischbach R (2006) Left ventricular function studied with MDCT. Eur Radiol 16:342–357

    Article  PubMed  Google Scholar 

  6. Mahnken AH, Muhlenbruch G, Gunther RW et al (2007) Cardiac CT: coronary arteries and beyond. Eur Radiol 17:994–1008

    Article  PubMed  Google Scholar 

  7. Miller S, Simonetti OP, Carr J et al (2002) MR Imaging of the heart with cine true fast imaging with steady-state precession: influence of spatial and temporal resolutions on left ventricular functional parameters. Radiology 223:263–269

    Article  PubMed  Google Scholar 

  8. Mahnken AH, Hohl C, Suess C et al (2006) Influence of heart rate and temporal resolution on left-ventricular volumes in cardiac multislice spiral computed tomography: a phantom study. Invest Radiol 41:429–435

    Article  PubMed  Google Scholar 

  9. Dewey M, Muller M, Teige F et al (2006) Evaluation of a semiautomatic software tool for left ventricular function analysis with 16-slice computed tomography. Eur Radiol 16:25–31

    Article  PubMed  Google Scholar 

  10. Dewey M, Muller M, Eddicks S et al (2006) Evaluation of global and regional left ventricular function with 16-slice computed tomography, biplane cineventriculography, and two-dimensional transthoracic echocardiography: comparison with magnetic resonance imaging. J Am Coll Cardiol 48:2034–2044

    Article  PubMed  Google Scholar 

  11. Henneman MM, Schuijf JD, Jukema JW et al (2006) Assessment of global and regional left ventricular function and volumes with 64-slice MSCT: a comparison with 2D echocardiography. J Nucl Cardiol 13:480–487

    Article  PubMed  Google Scholar 

  12. Muhlenbruch G, Das M, Hohl C et al (2006) Global left ventricular function in cardiac CT. Evaluation of an automated 3D region-growing segmentation algorithm. Eur Radiol 16:1117–1123

    Article  PubMed  Google Scholar 

  13. Folland ED, Parisi AF, Moynihan PF et al (1979) Assessment of left ventricular ejection fraction and volumes by real-time, two-dimensional echocardiography. A comparison of cineangiographic and radionuclide techniques. Circulation 60:760–766

    PubMed  CAS  Google Scholar 

  14. Suzuki S, Furui S, Kaminaga T et al (2006) Accuracy and efficiency of left ventricular ejection fraction analysis, using multidetector row computed tomography: effect of image reconstruction window within cardiac phase, slice thickness, and interval of short-axis sections. Circ J 70:289–296

    Article  PubMed  Google Scholar 

  15. Mahnken AH, Koos R, Katoh M et al (2005) Sixteen-slice spiral CT versus MR imaging for the assessment of left ventricular function in acute myocardial infarction. Eur Radiol 15:714–720

    Article  PubMed  Google Scholar 

  16. Bansal D, Singh RM, Sarkar M et al (2008) Assessment of left ventricular function: comparison of cardiac multidetector-row computed tomography with two-dimension standard echocardiography for assessment of left ventricular function. Int J Cardiovasc Imaging 24:317–325

    Article  PubMed  Google Scholar 

  17. Kim TH, Hur J, Kim SJ et al (2005) Two-phase reconstruction for the assessment of left ventricular volume and function using retrospective ECG-gated MDCT: comparison with echocardiography. AJR Am J Roentgenol 185:319–325

    PubMed  Google Scholar 

  18. Wu YW, Tadamura E, Yamamuro M et al (2008) Estimation of global and regional cardiac function using 64-slice computed tomography: a comparison study with echocardiography, gated-SPECT and cardiovascular magnetic resonance. Int J Cardiol 128:69–76

    Article  PubMed  Google Scholar 

  19. Schepis T, Gaemperli O, Koepfli P et al (2006) Comparison of 64-slice CT with gated SPECT for evaluation of left ventricular function. J Nucl Med 47:1288–1294

    PubMed  Google Scholar 

  20. Mahnken AH, Bruners P, Stanzel S et al (2009) Functional imaging in the assessment of myocardial infarction: MR imaging vs. MDCT vs. SPECT. Eur J Radiol 71:480–485

    Article  PubMed  Google Scholar 

  21. Ko SM, Kim YJ, Park JH et al (2010) Assessment of left ventricular ejection fraction and regional wall motion with 64-slice multidetector CT: a comparison with two-dimensional transthoracic echocardiography. Br J Radiol 83:28–34

    Article  PubMed  Google Scholar 

  22. Cury RC, Nieman K, Shapiro MD et al (2007) Comprehensive cardiac CT study: evaluation of coronary arteries, left ventricular function, and myocardial perfusion—is it possible? J Nucl Cardiol 14:229–243

    Article  PubMed  Google Scholar 

  23. Elgeti T, Lembcke A, Enzweiler CN et al (2004) Comparison of electron beam computed tomography with magnetic resonance imaging in assessment of right ventricular volumes and function. J Comput Assist Tomogr 28:679–685

    Article  PubMed  Google Scholar 

  24. Juergens KU, Maintz D, Grude M et al (2005) Multi-detector row computed tomography of the heart: does a multi-segment reconstruction algorithm improve left ventricular volume measurements? Eur Radiol 15:111–117

    Article  PubMed  Google Scholar 

  25. Mahnken AH, Spuentrup E, Niethammer M et al (2003) Quantitative and qualitative assessment of left ventricular volume with ECG-gated multislice spiral CT: value of different image reconstruction algorithms in comparison to MRI. Acta Radiol 44:604–611

    Article  PubMed  CAS  Google Scholar 

  26. Bellenger NG, Burgess MI, Ray SG et al (2000) Comparison of left ventricular ejection fraction and volumes in heart failure by echocardiography, radionuclide ventriculography and cardiovascular magnetic resonance; are they interchangeable? Eur Heart J 21:1387–1396

    Article  PubMed  CAS  Google Scholar 

  27. Vogel-Claussen J, Finn JP, Gomes AS et al (2006) Left ventricular papillary muscle mass: relationship to left ventricular mass and volumes by magnetic resonance imaging. J Comput Assist Tomogr 30:426–432

    Article  PubMed  Google Scholar 

  28. Sievers B, Kirchberg S, Bakan A et al (2004) Impact of papillary muscles in ventricular volume and ejection fraction assessment by cardiovascular magnetic resonance. J Cardiovasc Magn Reson 6:9–16

    Article  PubMed  Google Scholar 

  29. Busch S, Johnson TR, Wintersperger BJ et al (2008) Quantitative assessment of left ventricular function with dual-source CT in comparison to cardiac magnetic resonance imaging: initial findings. Eur Radiol 18:570–575

    Article  PubMed  CAS  Google Scholar 

  30. Yamakado T, Okano S, Higashiyama S et al (1985) Effects of nitroglycerin on left ventricular systolic, diastolic and regional myocardial function in patients with coronary artery disease. J Cardio 15:273–284

    CAS  Google Scholar 

  31. Bittencourt MS, Schmidt B, Seltmann M et al. Iterative reconstruction in image space (IRIS) in cardiac computed tomography: initial experience. Int J Cardiovasc Imag

  32. Mahnken AH, Bruder H, Suess C et al (2007) Dual-source computed tomography for assessing cardiac function: a phantom study. Invest Radiol 42:491–498

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by Chungnam National University Hospital Research Fund 2010, Republic of Korea. The authors would like to thank the Chungnam National University Hospital.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Song Soo Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ko, Yj., Kim, S.S., Park, WJ. et al. Comparison of global left ventricular function using 20 phases with 10-phase reconstructions in multidetector-row computed tomography. Int J Cardiovasc Imaging 28, 603–611 (2012). https://doi.org/10.1007/s10554-011-9828-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10554-011-9828-z

Keywords

Navigation