Skip to main content
Log in

Left ventricular function studied with MDCT

  • Cardiac
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

Accurate determination of left ventricular (LV) myocardial function is fundamental for clinical diagnosis, risk stratification, and estimation of prognosis in patients with ischemic and nonischemic cardiomyopathy. Primarily, multi-detector-row spiral CT (MDCT) of the heart aimed at detecting coronary artery obstruction and cardiac morphology. Multiple studies have demonstrated that retrospectively, ECG-gated MDCT determination of LV volumes and consequently global LV function parameters is feasible in good agreement with established imaging modalities such as cineventriculography, echocardiography, and cine magnetic resonance imaging (CMR). Post-processing tools allow fast and semi-automatic determination of LV function parameters from MDCT data in analogy to known CMR evaluation approaches. Although MDCT is not considered to be first-line modality for LV function assessment, this technique provides accessory dynamic information in patients undergoing MDCT coronary angiography, contributing to combined assessment of cardiac morphology and function without need of additional radiation exposure. MDCT regional LV wall motion analysis at rest is feasible, but further improvement in temporal resolution seems mandatory to match results obtained from competing modalities. This paper will discuss the diagnostic potential of MDCT for assessment of LV function with regards to accuracy and clinical applications, as well as limitations, particularly in comparison with CMR as modality of reference.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Hammermeister KE, DeRouen TA, Dodge HT (1979) Variables predictive of survival in patients with coronary disease. Selection by univariate and multivariate analyses from the clinical, electrocardiographic, exercise, arteriographic, and quantitative angiographic evaluations. Circulation 59:421–430

    PubMed  Google Scholar 

  2. White HD, Norris RM, Brown MA, Brandt PWT, Whitlock RML, Wild CJ (1987) Left ventricular end-systolic volume as the major determination of survival after recovery from myocardial infarction. Circulation 76:44–51

    PubMed  Google Scholar 

  3. Shah PK, Maddahi J, Staniloff HM et al (1986) Variable spectrum and prognostic implications of left and right ventricular ejection fraction in patients with and without clinical heart failure after acute myocardial infarction. Am J Cardiol 58:387–393

    Article  PubMed  Google Scholar 

  4. Schocken DD, Arrieta MI, Leaverton PE, Ross EA (1992) Prevalence and mortality rate of congestive heart failure in the United States. J Am Coll Cardiol 20:301–305

    PubMed  Google Scholar 

  5. Gerber TC, Behrenbeck T, Allison T, Mullan BP, Rumberger JA, Gibbons RJ (1999) Comparison of measurement of left ventricular ejection fraction by Tc-99 m sestamibi first-pass angiography with electron beam computed tomography in patients with anterior wall acute myocardial infarction. Am J Cardiol 83:1022–1026

    Article  PubMed  Google Scholar 

  6. Nieman K, Cademartiri F, Lemos PA, Raaijmakers R, Pattynama PM, de Feyter PJ (2002) Reliable noninvasive coronary angiography with fast submillimeter multislice spiral computed tomography. Circulation 106:2051–2054

    PubMed  Google Scholar 

  7. Ropers D, Baum U, Pohle K et al (2003) Detection of coronary artery stenoses with thin-slice multi-detector row spiral computed tomography and multiplanar reconstruction. Circulation 107:664–666

    Article  PubMed  Google Scholar 

  8. Hoffmann U, Moselewski F, Cury RC et al (2004) Predictive value of 16-slice multidetector spiral computed tomography to detect significant obstructive coronary artery disease in patients at high risk for coronary artery disease: patient-versus-segment-based analysis. Circulation 110:2638–2643

    Article  PubMed  Google Scholar 

  9. Dewey M, Laule M, Krug L et al (2004) Multisegment and halfscan reconstruction of 16-slice computed tomography for detection of coronary artery stenoses. Invest Radiol 39:223–229

    Article  PubMed  Google Scholar 

  10. Hamoir XL, Flohr T, Hamoir V et al (2005) Coronary arteries: assessment of image quality and optimal reconstruction window in retrospective ECG-gated multislice CT at 375-ms gantry rotation time. Eur Radiol 15:296–304

    Article  PubMed  Google Scholar 

  11. Lorenz CH, Walker ES, Morgan VL, Klein SS, Graham Jr TP (1999) Normal human right and left ventricular mass, systolic function, and gender differences by Cine Magnetic Resonance Imaging. J Cardiol Magn Reson 1:7–21

    Google Scholar 

  12. Sandstede J, Lipke C, Beer M et al (2000) Age- and gender-specific differences in left and right ventricular cardiac function and mass determined by cine magnetic resonance imaging. Eur Radiol 10:438–442

    Article  PubMed  Google Scholar 

  13. Alfakih K, Plein S, Thiele H, Jones T, Ridgway JP, Sivananthan MU (2003) Normal human left and right ventricular dimensions for MRI as assessed by turbo gradient echo and steady-state free precession imaging sequences. J Magn Reson Imaging 17:323–329

    Article  PubMed  Google Scholar 

  14. Setser RM, Fischer SE, Lorenz CH (2000) Quantification of left ventricular function with magnetic resonance images acquired in real time. J Magn Reson Imaging 12:430–438

    Article  PubMed  Google Scholar 

  15. Barkhausen J, Ruehm SG, Goyen M et al (2001) MR evaluation of ventricular function: true fast imaging with steady-state precession versus fast low-angle shot cine MR imaging: feasibility study. Radiology 219:264–269

    PubMed  Google Scholar 

  16. Thiele H, Nagel E, Paetsch I et al (2001) Functional cardiac MR imaging with steady-state free precession (SSFP) significantly improves endocardial border delineation without contrast agents. J Magn Reson Imaging 14:362–367

    Article  PubMed  Google Scholar 

  17. Messrroghli DR, Bainbridge GJ, Alfakih K et al (2005) Assessment of regional left ventricular function accuracy and reproducibility of positioning standard short-axis sections in cardiac MR imaging. Radiology 235:229–236

    PubMed  Google Scholar 

  18. Plein S, Smith WHT, Ridgway JP et al (2001) Qualitative and quantitative analysis of regional left ventricular wall dynamics using real-time magnetic resonance imaging: comparison with conventional breath-hold gradient echo acquisition in volunteers and patients. J Magn Reson Imaging 14:23–30

    Article  PubMed  Google Scholar 

  19. Spuentrup E, Schroeder J, Mahnken AH et al (2003) Quantitative assessment of left ventricular function with interactive real-time spiral and radial MR imaging. Radiology 227:870–876

    PubMed  Google Scholar 

  20. Kuhl HP, Spuentrup E, Wall A et al (2004) Assessment of myocardial function with interactive non-breath-hold real-time MR imaging: comparison with echocardiography and breath-hold Cine MR imaging. Radiology 231:198–207

    PubMed  Google Scholar 

  21. Kuijpers D, Janssen CHC, van Dijkman PRM, Oudkerk M (2004) Dobutamine stress MRI. Part 1. Safety and feasibility of dobutamine cardiovascular magnetic resonance in patients suspected of myocardial ischemia. Eur Radiol 14:1823–1828

    PubMed  Google Scholar 

  22. Kuijpers D, van Dijkman PRM, Janssen CHC, Vliegenhart R, Zijlstra F, Oudkerk M (2004) Dobutamine stress MRI. Part II. Risk stratification with dobutamine cardiovascular magnetic resonance in patients suspected of myocardial ischemia. Eur Radiol 14:2046–2052

    Article  PubMed  Google Scholar 

  23. Malm S, Frigstad S, Sagberg E, Larsson H, Skjaerpe T (2004) Accurate and reproducible measurement of left ventricular volume and ejection fraction by contrast echocardiography: a comparison with magnetic resonance imaging. J Am Coll Cardiol 44:1030–1035

    Article  PubMed  Google Scholar 

  24. Bavelaar-Croon CD, Kayser HW, van der Wall EE et al (2000) Left ventricular function: correlation of quantitative gated SPECT and MR imaging over a wide range of values. Radiology 217:572–575

    PubMed  Google Scholar 

  25. Manrique A, Faraggi M, Vera P et al (1999) TI-201 and Tc-99m MIBI gated SPECT in patients with large perfusion defects and left ventricular dysfunction: comparison with equilibrium radionuclide angiography. J Nucl Med 40:805–809

    PubMed  Google Scholar 

  26. Slart RHJA, Bax JJ, de Jong RM et al (2004) Comparison of gated PET with MRI for evaluation of left ventricular function in patients with coronary artery disease. J Nucl Med 45:176–182

    PubMed  Google Scholar 

  27. Lackner K, Thurn P (1981) Computed tomography of the heart: ECG-gated and continuous scans. Radiology 140:413–420

    PubMed  Google Scholar 

  28. Woodhouse CE, Janowitz WR, Viamonte M Jr (1997) Coronary arteries: retrospective cardiac gating technique to reduce cardiac motion artifact at spiral CT. Radiology 204:566–569

    PubMed  Google Scholar 

  29. Boyd DP, Lipton MJ (1983) Cardiac computed-tomography. Proc IEEE 71:298–307

    Google Scholar 

  30. Woo P, Mao S, Wang S, Detrano RC (1997) Left ventricular size determined by electron beam computed tomography predicts significant coronary artery disease and events. Am J Cardiol 79:1236–1238

    Article  PubMed  Google Scholar 

  31. Cerqueira MD, Weissman NJ, Dilsizian V et al (2002) Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart. A statement for healthcare professionals from the Cardiac Imaging Committee of the Council on Clinical Cardiology of the American Heart Association. Circulation 105:539–542

    Article  PubMed  Google Scholar 

  32. Leitlinien der Deutschen Röntgengesellschaft (DRG) für den Einsatz der MR-Tomographie in der Herzdiagnostik. Fortschr Röntgenstr 2004:176:1185–1193

    Google Scholar 

  33. Juergens KU, Schulze Eilfing B, DeAngelis G, Seifarth H, Heindel W, Fischbach R (2004) Anatomy and morphology of the heart based on multidetector-row computed tomography coronary angiography: morphometric analysis of 60 middle aged asymptomatic male individuals. Eur Radiol 14:R3

    Google Scholar 

  34. Juergens KU, Grude M, Maintz D et al (2004) Multi-detector row CT of left ventricular function with dedicated analysis software versus MR imaging: initial experience. Radiology 230:403–410

    PubMed  Google Scholar 

  35. Garett JS, Lanzer P, Jaschke W et al (1985) Measurement of cardiac output by cine computed tomography. Am J Cardiol 56:657–661

    PubMed  Google Scholar 

  36. Ludman PF, Coats AJ, Poole-Wilson PA, Rees RS (1993) Measurement accuracy of cardiac output in humans: indicator dilution technique vs. geometric analysis by ultrafast computed tomography. J Am Coll Cardiol 21:1482–1489

    PubMed  Google Scholar 

  37. Mahnken AH, Klotz E, Hennemuth A et al (2003) Measurement of cardiac output from a test-bolus injection in multislice computed tomography. Eur Radiol 13:2498–2504

    Article  PubMed  Google Scholar 

  38. Mahnken AH, Henzler D, Klotz E et al (2004) Determination of cardiac output with multislice spiral computed tomography: a validation study. Invest Radiol 39:451–454

    Article  PubMed  Google Scholar 

  39. Boehm T, Alkadhi H, Roffi M et al (2004) Time-effectiveness, observer-dependence, and accuracy of measurements of left ventricular ejection fraction using 4-channel MDCT. Fortschr Röntgenstr 176:529–537

    Google Scholar 

  40. Juergens KU, Seifarth H, Maintz D et al (2005) Left ventricular function determination with Multidetector-row CT of the heart: are short-axis image reformations necessary? Am J Roentgenol (in press)

  41. Koch K, Oellig F, Kunz P et al (2004) Assessment of global and regional left ventricular function with a 16-slice Spiral-CT using two different software tools for quantitative analysis and qualitative evaluation of wall motion changes in comparison with Magnetic Resonance Imaging. Fortschr Röntgenstr 176:1786–1793

    Article  Google Scholar 

  42. Juergens KU, Grude M, Fallenberg EM et al (2002) Using ECG-gated multidetector CT to evaluate global left ventricular myocardial function in patients with coronary artery disease. Am J Roentgenol 179:1545–1550

    PubMed  Google Scholar 

  43. Heuschmid M, Küttner A, Schröder S et al (2003) Left ventricular functional parameters using ECG-gated multidetector spiral CT in comparison with invasive ventriculography. Fortschr Röntgenstr 175:1349–1354

    Google Scholar 

  44. Hosoi S, Mochizuki T, Miyagawa M, Shen Y, Murase K, Ikezoe J (2003) Assessment of left ventricular volumes using multidetector row computed tomography (MDCT): phantom and human studies. Radiat Med 21:62–67

    PubMed  Google Scholar 

  45. Dirksen MS, Bax JJ, de Roos A et al (2002) Usefulness of dynamic multislice computed tomography of left ventricular function in unstable angina pectoris and comparison with echocardiography. Am J Cardiol 90:1157–1160

    Article  PubMed  Google Scholar 

  46. Dirksen MS, Jukema JW, Bax JJ et al (2005) Cardiac multidetector-row computed tomography in patients with instable angina. Am J Cardiol 95:457–461

    Article  PubMed  Google Scholar 

  47. Grude M, Juergens KU, Wichter T et al (2003) Evaluation of global left ventricular myocardial function with electrocardiogram-gated multidetector computed tomography: comparison with magnetic resonance imaging. Invest Radiol 38:653–661

    PubMed  Google Scholar 

  48. Ehrhard K, Oberholzer K, Gast K, Mildenberger P, Kreitner K-F, Thelen M (2002) Multi-slice CT (MSCT) in cardiac function imaging: threshold-value-supported 3D volume reconstructions to determine the left ventricular ejection fraction in comparison to MRI. Fortschr Röntgenstr 174:1566–1569

    Article  Google Scholar 

  49. Mahnken AH, Spuentrup E, Niethammer M et al (2003) Quantitative and qualitative assessment of left ventricular volume with ECG-gated multislice Spiral CT: value of different image reconstruction algorithms in comparison to MRI. Acta Radiol 38:604–611

    Google Scholar 

  50. Halliburton SS, Petersilka M, Schvartzman PR, Obuchowski N, White RD (2003) Evaluation of left ventricular dysfunction using multiphasic reconstructions of coronary multi-slice computed tomography data in patients with chronic ischemic heart disease: validation against cine magnetic resonance imaging. Int J Card Imaging 19:73–83

    Article  Google Scholar 

  51. Mahnken AH, Spüntrup E, Wildberger JE et al (2003) Quantification of cardiac function with multislice spiral CT using retrospective ECG-gating: comparison with MRI. Fortschr Röntgenstr 175:83–88

    Article  Google Scholar 

  52. Coche E, Belge B, Vlassenbroeck A et al (2004) Accurate assessment of left ventricular volumes and ejection fraction using retrospectively gated multislice cardiac CT: comparison with cine MRI. Eur Radiol 14:S2–S270

    Article  Google Scholar 

  53. Juergens KU, Maintz D, Grude M et al (2005) Multi-detector row computed tomography of the heart: does a multi-segment reconstruction algorithm improve left ventricular volume measurements? Eur Radiol 15:111–117

    Article  PubMed  Google Scholar 

  54. Cui W, Kondo T, Anno T et al (2004) The accuracy and optimal slice thickness of multislice helical computed tomography for right and left ventricular volume measurement. Chin Med J 117:1283–1287

    PubMed  Google Scholar 

  55. Belge BM, Coche E, Vlassenbroek A, Van Beers B, Vanoverschelde J, Gerber BL (2004) Assessment of regional left ventricular wall thickness and wall thickening by retrospectively gated multi-detector row computed tomography: comparison with cine magnetic resonance imaging. Radiology 231:273 (P)

    Google Scholar 

  56. Schuijf JD, Bax JJ, Salm LP et al (2005) Noninvasive coronary imaging and assessment of left ventricular function using 16-slice computed tomography. Am J Cardiol 95:571–574

    Article  PubMed  Google Scholar 

  57. Heuschmid M, Rothfuss J, Schröder S et al (2005) Left ventricular functional parameters: comparison of 16-slice spiral CT with MRI. Fortschr Röntgenstr 177:60–66

    Article  Google Scholar 

  58. Yamamuro M, Tadamura E, Kubo S et al (2005) Cardiac functional analysis with multi-detector row CT and segmental reconstruction algorithm: comparison with echocardiography, SPECT, and MR imaging. Radiology 234:381–390

    PubMed  Google Scholar 

  59. Schlosser T, Pagonidis K, Herborn CU et al (2005) Assessment of left ventricular parameters using 16-MDCT and new software for endocardial and epicardial border delineation. Am J Roentgenol 184:765–773

    Google Scholar 

  60. Mahnken AH, Koos R, Katoh M et al (2005) Sixteen-slice spiral CT versus MR imaging for the assessment of left ventricular function in acute myocardial infarction. Eur Radiol 714–720

  61. Schuijf JD, Bax JJ, Jukema JW et al (2004) Noninvasive angiography and assessment of left ventricular function using multislice computed tomography in patients with type 2 diabetes. Diabetes Care 27:2905–2910

    PubMed  Google Scholar 

  62. Schuijf JD, Bax JJ, Jukema JW et al (2005) Noninvasive evaluation of the coronary arteries with multislice computed tomography in hypertensive patients. Hypertension 45:1–6

    Article  Google Scholar 

  63. Juergens KU, Ozgun M, Maintz D et al (2005) Analyse der globalen und regionalen linksventrikulären Funktion mittels 16-Zeilen-Spiral-Computertomographie des Herzens im Vergleich zur MR-Tomographie. Fortschr Röntgenstr 177:S273

    Google Scholar 

  64. Paul J-F, Dambrin G, Caussin C, Lancelin B, Angel C (2003) Sixteen-slice computed tomography after acute myocardial infarction. From perfusion defect to the culprit lesion. Circulation 108:373–374

    Article  PubMed  Google Scholar 

  65. Gosalia A, Haramati LB, Sheth MP, Spindola-Franco H (2004) CT detection of acute myocardial infarction. Am J Roentgenol 182:1563–1566

    Google Scholar 

  66. Koyama Y, Matsuoka H, Mochizuki T et al (2005) Assessment of reperfused acute myocardial infarction with two-phase contrast-enhanced helical CT: prediction of left ventricular function and wall thickness. Radiology 235:804–811

    PubMed  Google Scholar 

  67. Nikolaou K, Sanz J, Poon M et al (2005) Assessment of myocardial perfusion and viability from routine contrast-enhanced 16-detector-row computed tomography of the heart: preliminary results. Eur Radiol 15:864–871

    Article  PubMed  Google Scholar 

  68. Boese JM, Bahner ML, Albers J, van Kaick (2000) Optimization of temporal resolution in CT using retrospectively ECG-gating. Radiologe 40:123–129

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are indebted to the Interdisciplinary Center of Clinical Research (IZKF; B1, BMBF-01 KS 9604), University of Muenster, for excellent support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kai Uwe Juergens.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Juergens, K.U., Fischbach, R. Left ventricular function studied with MDCT. Eur Radiol 16, 342–357 (2006). https://doi.org/10.1007/s00330-005-2888-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-005-2888-5

Keywords

Navigation