Skip to main content

Advertisement

Log in

Significance of glucocorticoid signaling in triple-negative breast cancer patients: a newly revealed interaction with androgen signaling

  • Preclinical study
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

Purpose

Chemotherapy is the only current effective systemic treatment for triple-negative breast cancer (TNBC) patients. Therefore, the identification of active biological pathways that could become therapeutic targets is crucial. In this study, considering the well-reported biological roles of glucocorticoid and androgen receptors (GR, AR) in TNBC, we attempted to explore the effects of glucocorticoids (GCs) on cell kinetics as well as the potential interaction between GR and AR in TNBC.

Methods

We first explored the association between the status of GR, AR, and/or GCs-metabolizing enzymes such as 11β-hydroxysteroid dehydrogenase (11βHSD) 1 and 2 and the clinicopathological variables of the TNBC patients. Thereafter, we also studied the effects of dexamethasone (DEX) with/without dihydrotestosterone (DHT) on TNBC cell lines by assessing the cell proliferation, migration and GC response genes at the transcriptional level.

Results

GR positivity in carcinoma cells was significantly associated with adverse clinical outcome of the patients and AR positivity was significantly associated with lower histological grade and Ki-67 labeling index of the cases examined. In particular, AR positivity was significantly associated with decreased risks of developing recurrence in GR-positive TNBC patients. The subsequent in vitro studies revealed that DEX-promoted cell migration was inhibited by the co-treatment with DHT in GR/AR double-positive HCC38 cells. In addition, DHT inhibited the DEX-increased serum and glucocorticoid-regulated kinase-1 (SGK1) mRNA expression.

Conclusion

This is the first study to reveal that the interaction of GR and AR did influence the clinical outcome of TNBC patients and GCs induced cell migration in TNBC cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

11βHSD:

11Beta-hydroxysteroid dehydrogenase

11βHSD1:

11Beta-hydroxysteroid dehydrogenase type 1

11βHSD2:

11Beta-hydroxysteroid dehydrogenase type 2

95% CI:

95% Confidence interval

AR:

Androgen receptor

DEX:

Dexamethasone

DFS:

Disease-free survival

DHT:

Dihydrotestosterone

ER:

Estrogen receptor

GC:

Glucocorticoid

GR:

Glucocorticoid receptor

GRE:

Glucocorticoid response element

HER2:

Human epidermal growth factor receptor 2

LI:

Labeling index

OR:

Odds ratio

OS:

Overall survival

PR:

Progesterone receptor

qRT-PCR:

Quantitative real-time polymerase chain reaction

SGK1:

Serum and glucocorticoid-regulated kinase-1

TNBC:

Triple-negative breast cancer

References

  1. Skor MN, Wonder EL, Kocherginsky M et al (2013) Glucocorticoid receptor antagonism as a novel therapy for triple-negative breast cancer. Clin Cancer Res 19:6163–6172. https://doi.org/10.1158/1078-0432.CCR-12-3826

    Article  CAS  PubMed  Google Scholar 

  2. Bosch A, Eroles P, Zaragoza R, Vina JR, Lluch A (2010) Triple-negative breast cancer: molecular features, pathogenesis, treatment and current lines of research. Cancer Treat Rev 36:206–215. https://doi.org/10.1016/j.ctrv.2009.12.002

    Article  CAS  PubMed  Google Scholar 

  3. de Ruijter TC, Veeck J, de Hoon JP, van Engeland M, Tjan-Heijnen VC (2011) Characteristics of triple-negative breast cancer. J Cancer Res Clin Oncol 137:183–192. https://doi.org/10.1007/s00432-010-0957-x

    Article  CAS  PubMed  Google Scholar 

  4. McNamara KM, Yoda T, Miki Y et al (2013) Androgenic pathway in triple negative invasive ductal tumors: its correlation with tumor cell proliferation. Cancer Sci 104:639–646. https://doi.org/10.1111/cas.12121

    Article  CAS  PubMed  Google Scholar 

  5. McNamara KM, Yoda T, Takagi K, Miki Y, Suzuki T, Sasano H (2013) Androgen receptor in triple negative breast cancer. J Steroid Biochem Mol Biol 133:66–76. https://doi.org/10.1016/j.jsbmb.2012.08.007

    Article  CAS  PubMed  Google Scholar 

  6. Wang C, Pan B, Zhu H et al (2016) Prognostic value of androgen receptor in triple negative breast cancer: a meta-analysis. Oncotarget 7:46482–46491. https://doi.org/10.18632/oncotarget.10208

    Article  PubMed  PubMed Central  Google Scholar 

  7. Ricciardelli C, Bianco-Miotto T, Jindal S et al (2018) The magnitude of androgen receptor positivity in breast cancer is critical for reliable prediction of disease outcome. Clin Cancer Res. https://doi.org/10.1158/1078-0432.ccr-17-1199

    Article  PubMed  Google Scholar 

  8. Sunar V, Hayriye TD, Sarici F et al (2018) Association between androgen receptor status and prognosis in triple negative breast cancer. J BU ON 23:1325–1330

    Google Scholar 

  9. Belova L, Delgado B, Kocherginsky M, Melhem A, Olopade OI, Conzen SD (2009) Glucocorticoid receptor expression in breast cancer associates with older patient age. Breast Cancer Res Treat 116:441–447. https://doi.org/10.1007/s10549-008-0136-9

    Article  CAS  PubMed  Google Scholar 

  10. Abduljabbar R, Negm OH, Lai CF et al (2015) Clinical and biological significance of glucocorticoid receptor (GR) expression in breast cancer. Breast Cancer Res Treat 150:335–346. https://doi.org/10.1007/s10549-015-3335-1

    Article  CAS  PubMed  Google Scholar 

  11. Baker GM, Murphy T, Block T, Nguyen D, Lynch FJ (2015) Development and validation of an immunohistochemistry assay to assess glucocorticoid receptor expression for clinical trials of mifepristone in breast cancer. Cancer Manag Res 7:361–368. https://doi.org/10.2147/CMAR.S91546

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Chen Z, Lan X, Wu D et al (2015) Ligand-dependent genomic function of glucocorticoid receptor in triple-negative breast cancer. Nat Commun 6:8323. https://doi.org/10.1038/ncomms9323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. West DC, Kocherginsky M, Tonsing-Carter EY et al (2018) Discovery of a glucocorticoid receptor (GR) activity signature using selective GR antagonism in ER-negative breast cancer. Clin Cancer Res 24:3433–3446. https://doi.org/10.1158/1078-0432.Ccr-17-2793

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Baschant U, Tuckermann J (2010) The role of the glucocorticoid receptor in inflammation and immunity. J Steroid Biochem Mol Biol 120:69–75. https://doi.org/10.1016/j.jsbmb.2010.03.058

    Article  CAS  PubMed  Google Scholar 

  15. Krozowski Z, Li KX, Koyama K et al (1999) The type I and type II 11beta-hydroxysteroid dehydrogenase enzymes. J Steroid Biochem Mol Biol 69:391–401

    Article  CAS  Google Scholar 

  16. Pan D, Kocherginsky M, Conzen SD (2011) Activation of the glucocorticoid receptor is associated with poor prognosis in estrogen receptor-negative breast cancer. Cancer Res 71:6360–6370. https://doi.org/10.1158/0008-5472.CAN-11-0362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Mikosz CA, Brickley DR, Sharkey MS, Moran TW, Conzen SD (2001) Glucocorticoid receptor-mediated protection from apoptosis is associated with induction of the serine/threonine survival kinase gene, sgk-1. J Biol Chem 276:16649–16654. https://doi.org/10.1074/jbc.M010842200

    Article  CAS  PubMed  Google Scholar 

  18. Wu W, Chaudhuri S, Brickley DR, Pang D, Karrison T, Conzen SD (2004) Microarray analysis reveals glucocorticoid-regulated survival genes that are associated with inhibition of apoptosis in breast epithelial cells. Cancer Res 64:1757–1764

    Article  CAS  Google Scholar 

  19. Wu W, Pew T, Zou M, Pang D, Conzen SD (2005) Glucocorticoid receptor-induced MAPK phosphatase-1 (MPK-1) expression inhibits paclitaxel-associated MAPK activation and contributes to breast cancer cell survival. J Biol Chem 280:4117–4124. https://doi.org/10.1074/jbc.M411200200

    Article  CAS  PubMed  Google Scholar 

  20. Pang D, Kocherginsky M, Krausz T, Kim SY, Conzen SD (2006) Dexamethasone decreases xenograft response to Paclitaxel through inhibition of tumor cell apoptosis. Cancer Biol Ther 5:933–940

    Article  CAS  Google Scholar 

  21. Li Z, Dong J, Zou T et al (2017) Dexamethasone induces docetaxel and cisplatin resistance partially through up-regulating Kruppel-like factor 5 in triple-negative breast cancer. Oncotarget 8:11555–11565. https://doi.org/10.18632/oncotarget.14135

    Article  PubMed  Google Scholar 

  22. Burnstein KL, Maiorino CA, Dai JL, Cameron DJ (1995) Androgen and glucocorticoid regulation of androgen receptor cDNA expression. Mol Cell Endocrinol 115:177–186

    Article  CAS  Google Scholar 

  23. Chen S, Wang J, Yu G, Liu W, Pearce D (1997) Androgen and glucocorticoid receptor heterodimer formation. A possible mechanism for mutual inhibition of transcriptional activity. J Biol Chem 272:14087–14092

    Article  CAS  Google Scholar 

  24. Xie N, Cheng H, Lin D et al (2015) The expression of glucocorticoid receptor is negatively regulated by active androgen receptor signaling in prostate tumors. Int J Cancer 136:E27–38. https://doi.org/10.1002/ijc.29147

    Article  CAS  PubMed  Google Scholar 

  25. Lin KT, Wang LH (2016) New dimension of glucocorticoids in cancer treatment. Steroids 111:84–88. https://doi.org/10.1016/j.steroids.2016.02.019

    Article  CAS  PubMed  Google Scholar 

  26. Isikbay M, Otto K, Kregel S et al (2014) Glucocorticoid receptor activity contributes to resistance to androgen-targeted therapy in prostate cancer. Horm Cancer 5:72–89. https://doi.org/10.1007/s12672-014-0173-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. McCarty KS Jr, Miller LS, Cox EB, Konrath J, McCarty KS Sr (1985) Estrogen receptor analyses. Correlation of biochemical and immunohistochemical methods using monoclonal antireceptor antibodies. Arch Pathol Lab Med 109:716–721

    PubMed  Google Scholar 

  28. Dowsett M, Nielsen TO, A'Hern R et al (2011) Assessment of Ki67 in breast cancer: recommendations from the International Ki67 in Breast Cancer working group. J Natl Cancer Inst 103:1656–1664. https://doi.org/10.1093/jnci/djr393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Tamaki K, Ishida T, Tamaki N et al (2014) Analysis of clinically relevant values of Ki-67 labeling index in Japanese breast cancer patients. Breast Cancer 21:325–333. https://doi.org/10.1007/s12282-012-0387-5

    Article  PubMed  Google Scholar 

  30. Buxant F, Engohan-Aloghe C, Noel JC (2010) Estrogen receptor, progesterone receptor, and glucocorticoid receptor expression in normal breast tissue, breast in situ carcinoma, and invasive breast cancer. Appl Immunohistochem Mol Morphol 18:254–257. https://doi.org/10.1097/PAI.0b013e3181c10180

    Article  CAS  PubMed  Google Scholar 

  31. Ogawa Y, Hai E, Matsumoto K et al (2008) Androgen receptor expression in breast cancer: relationship with clinicopathological factors and biomarkers. Int J Clin Oncol 13:431–435. https://doi.org/10.1007/s10147-008-0770-6

    Article  CAS  PubMed  Google Scholar 

  32. Chen J, Zhang X, Tian R et al (2010) Expression of androgen receptor in breast carcinoma and its relationship with estrogen receptor, progesterone receptor and HER2 status. Zhonghua Bing Li Xue Za Zhi 39:743–746

    CAS  PubMed  Google Scholar 

  33. Micello D, Marando A, Sahnane N, Riva C, Capella C, Sessa F (2010) Androgen receptor is frequently expressed in HER2-positive, ER/PR-negative breast cancers. Virchows Arch 457:467–476. https://doi.org/10.1007/s00428-010-0964-y

    Article  CAS  PubMed  Google Scholar 

  34. Park S, Koo J, Park HS et al (2010) Expression of androgen receptors in primary breast cancer. Ann Oncol 21:488–492. https://doi.org/10.1093/annonc/mdp510

    Article  CAS  PubMed  Google Scholar 

  35. Ding YC, Steele L, Warden C et al (2019) Molecular subtypes of triple-negative breast cancer in women of different race and ethnicity. Oncotarget 10:198–208. https://doi.org/10.18632/oncotarget.26559

    Article  PubMed  PubMed Central  Google Scholar 

  36. Naderi A, Hughes-Davies L (2008) A functionally significant cross-talk between androgen receptor and ErbB2 pathways in estrogen receptor negative breast cancer. Neoplasia 10:542–548

    Article  CAS  Google Scholar 

  37. Chia KM, Liu J, Francis GD, Naderi A (2011) A feedback loop between androgen receptor and ERK signaling in estrogen receptor-negative breast cancer. Neoplasia 13:154–166

    Article  CAS  Google Scholar 

  38. So AY, Chaivorapol C, Bolton EC, Li H, Yamamoto KR (2007) Determinants of cell- and gene-specific transcriptional regulation by the glucocorticoid receptor. PLoS Genet 3:e94. https://doi.org/10.1371/journal.pgen.0030094

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Itani OA, Liu KZ, Cornish KL, Campbell JR, Thomas CP (2002) Glucocorticoids stimulate human sgk1 gene expression by activation of a GRE in its 5'-flanking region. Am J Physiol Endocrinol Metab 283:E971–979. https://doi.org/10.1152/ajpendo.00021.2002

    Article  CAS  PubMed  Google Scholar 

  40. Luecke HF, Yamamoto KR (2005) The glucocorticoid receptor blocks P-TEFb recruitment by NFkappaB to effect promoter-specific transcriptional repression. Genes Dev 19:1116–1127. https://doi.org/10.1101/gad.1297105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Gennari A, Salvadori B, Tognoni A, Conte PF (1996) Rapid intravenous premedication with dexamethasone prevents hypersensitivity reactions to paclitaxel. Ann Oncol 7:978–979. https://doi.org/10.1093/oxfordjournals.annonc.a010806

    Article  CAS  PubMed  Google Scholar 

  42. Nanda R, Stringer-Reasor EM, Saha P et al (2016) A randomized phase I trial of nanoparticle albumin-bound paclitaxel with or without mifepristone for advanced breast cancer. Springerplus 5:947. https://doi.org/10.1186/s40064-016-2457-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Yamamoto Y, Kawano I, Iwase H (2011) Nab-paclitaxel for the treatment of breast cancer: efficacy, safety, and approval. OncoTargets Ther 4:123–136. https://doi.org/10.2147/ott.S13836

    Article  CAS  Google Scholar 

  44. Roila F, Molassiotis A, Herrstedt J et al (2016) 2016 MASCC and ESMO guideline update for the prevention of chemotherapy- and radiotherapy-induced nausea and vomiting and of nausea and vomiting in advanced cancer patients. Ann Oncol 27:v119–v133. https://doi.org/10.1093/annonc/mdw270

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the members of the Department of Pathology and the Department of Breast and Endocrine Surgical Oncology in Tohoku University Graduate School of Medicine for their support.

Funding

This study was not funded by any grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keely May McNamara.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committees (Tohoku University Hospital: 2018-1-191, Sagara Hospital: 15-2, JCHO Kurume General Hospital: 148) and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 22 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kanai, A., McNamara, K.M., Iwabuchi, E. et al. Significance of glucocorticoid signaling in triple-negative breast cancer patients: a newly revealed interaction with androgen signaling. Breast Cancer Res Treat 180, 97–110 (2020). https://doi.org/10.1007/s10549-020-05523-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-020-05523-7

Keywords

Navigation