Skip to main content

Advertisement

Log in

Disseminated tumour cells in the bone marrow in early breast cancer: morphological categories of immunocytochemically positive cells have different impact on clinical outcome

  • Clinical trial
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

Detection of disseminated tumour cells (DTCs) in bone marrow by immunocytochemistry (ICC) includes morphological evaluation of cytokeratin immunopositive cells. The aim of this study was to disclose the prognostic significance of different morphological categories of ICC-positive cells according to treatment status and tumour subtype. Bone marrow samples (at surgery) were analysed for the presence of cytokeratin-positive DTCs by a standard immunocytochemical method. The immunopositive cells were classified into the following categories, prior to any analysis of the association between DTCs and clinical outcome: tumour cells (TC), uninterpretable cells (UIC), hematopoietic cells (HC), and questionable HC (QHC). The analysis included 747 early breast cancer patients. Median follow-up was 84 months for relapse, and 99 months for death. The categorisation of the ICC positive cells revealed TC in 13.3 % of the patients, whereas 13.1, 17.8, and 21.4 % of the cases were positive for UIC, QHC, and HC, respectively. Analysing all patients, only TC and UIC predicted systemic relapse. Separate analysis of all patients not receiving adjuvant systemic treatment (No-Adj; n = 389) showed that only QHC were associated with reduced survival (DDFS: p = 0.008; BCSS: p = 0.004, log rank) and the presence of QHC also remained significant in multivariate analysis. Primary tumour subgroup analysis (of all patients) by hormone receptors (HR) and HER2, demonstrated that only TC/UIC had prognostic impact in the HR+/HER2− patients, whereas presence of QHC was associated with unfavourable outcome only in triple negative patients (DDFS: p = 0.004; BCSS: p = 0.024). Patients with ≥3HC had improved outcome compared to those with fewer/no HC (DDFS: p = 0.005; BCSS: p = 0.009). Hence, morphological DTC subgroups may differ in clinical significance according to primary tumour subtype and treatment status. This emphasises the importance of DTC characterisation, and separate analyses of DTC categories according to tumour subtype. Hematopoietic (“false positive”) cells might predict an immune-related favorable clinical outcome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

DTCs:

Disseminated tumour cells

BM:

Bone marrow

FU:

Follow-up

ICC:

Immunocytochemical analysis

MNC:

Mononuclear cells

APAAP:

Alkaline phosphatase/monoclonal mouse anti-alkaline phosphatase

HC:

Hematopoietic cells

TC:

Tumour cells

UIC:

Uninterpretable cells

pT:

Histopathological primary tumor size status

pN:

Histopathological lymph node status

G1, 2, 3:

Histopathological grade 1–3

IHC:

Immunohistochemical staining

ER:

Estrogen receptor(s)

PR:

Progesteron receptor(s)

HER2:

Human epidermal growth factor receptor 2

TMA:

Tissue microarray

FISH:

Fluorescence in situ hybridization

QHC:

Questionable hematopoietic cells

BCSS:

Breast cancer-specific survival

DDFS:

Distant disease-free survival

HR:

Hormone receptor(s)

TN:

Triple negative

CTCs:

Circulating tumour cells

References

  1. Braun S, Vogl FD, Naume B, Janni W, Osborne MP, Coombes RC, Schlimok G, Diel IJ, Gerber B, Gebauer G, Pierga JY, Marth C, Oruzio D, Wiedswang G, Solomayer EF, Kundt G, Strobl B, Fehm T, Wong GY, Bliss J, Vincent-Salomon A, Pantel K (2005) A pooled analysis of bone marrow micrometastasis in breast cancer. N Engl J Med 353:793–802

    Article  PubMed  CAS  Google Scholar 

  2. Janni W, Vogl FD, Wiedswang G, Synnestvedt M, Fehm T, Juckstock J, Borgen E, Rack B, Braun S, Sommer H, Solomayer E, Pantel K, Nesland J, Friese K, Naume B (2011) Persistence of disseminated tumor cells in the bone marrow of breast cancer patients predicts increased risk for relapse–a European pooled analysis. Clin Cancer Res 17:2967–2976

    Article  PubMed  Google Scholar 

  3. Borgen E, Naume B, Nesland JM, Kvalheim G, Beiske K, Fodstad O, Diel I, Solomayer EF, Theocharous P, Coombes RC, Smith BM, Wunder E, Marolleau JP, Garcia J, Pantel K (1999) Standardization of the immunocytochemical detection of cancer cells in BM and blood: I. Establishment of objective criteria for the evaluation of immunostained cells. Cytotherapy 1:377–388

    Article  PubMed  CAS  Google Scholar 

  4. Fehm T, Braun S, Muller V, Janni W, Gebauer G, Marth C, Schindlbeck C, Wallwiener D, Borgen E, Naume B, Pantel K, Solomayer E (2006) A concept for the standardized detection of disseminated tumor cells in bone marrow from patients with primary breast cancer and its clinical implementation. Cancer 107:885–892

    Article  PubMed  Google Scholar 

  5. Bidard FC, Vincent-Salomon A, Gomme S, Nos C, de Rycke Y, Thiery JP, Sigal-Zafrani B, Mignot L, Sastre-Garau X, Pierga JY (2008) Disseminated tumor cells of breast cancer patients: a strong prognostic factor for distant and local relapse. Clin Cancer Res 14:3306–3311

    Article  PubMed  CAS  Google Scholar 

  6. Naume B, Wiedswang G, Borgen E, Kvalheim G, Karesen R, Qvist H, Janbu J, Harbitz T, Nesland JM (2004) The prognostic value of isolated tumor cells in bone marrow in breast cancer patients: evaluation of morphological categories and the number of clinically significant cells. Clin Cancer Res 10:3091–3097

    Article  PubMed  Google Scholar 

  7. Naume B, Borgen E, Kvalheim G, Karesen R, Qvist H, Sauer T, Kumar T, Nesland JM (2001) Detection of isolated tumor cells in bone marrow in early-stage breast carcinoma patients: comparison with preoperative clinical parameters and primary tumor characteristics. Clin Cancer Res 7:4122–4129

    PubMed  CAS  Google Scholar 

  8. Wiedswang G, Borgen E, Karesen R, Kvalheim G, Nesland JM, Qvist H, Schlichting E, Sauer T, Janbu J, Harbitz T, Naume B (2003) Detection of isolated tumor cells in bone marrow is an independent prognostic factor in breast cancer. J Clin Oncol 21:3469–3478

    Article  PubMed  CAS  Google Scholar 

  9. Wiedswang G, Borgen E, Karesen R, Qvist H, Janbu J, Kvalheim G, Nesland JM, Naume B (2004) Isolated tumor cells in bone marrow three years after diagnosis in disease-free breast cancer patients predict unfavorable clinical outcome. Clin Cancer Res 10:5342–5348

    Article  PubMed  Google Scholar 

  10. Curtis C, Shah SP, Chin SF, Turashvili G, Rueda OM, Dunning MJ, Speed D, Lynch AG, Samarajiwa S, Yuan Y, Graf S, Ha G, Haffari G, Bashashati A, Russell R, McKinney S, Langerod A, Green A, Provenzano E, Wishart G, Pinder S, Watson P, Markowetz F, Murphy L, Ellis I et al (2012) The genomic and transcriptomic architecture of 2,000 breast tumours reveals novel subgroups. Nature 486:346–352

    PubMed  CAS  Google Scholar 

  11. Goldhirsch A, Wood WC, Coates AS, Gelber RD, Thurlimann B, Senn HJ (2011) Strategies for subtypes—dealing with the diversity of breast cancer: highlights of the St Gallen International Expert Consensus on the Primary Therapy of Early Breast Cancer 2011. Ann Oncol 22:1736–1747

    Article  PubMed  CAS  Google Scholar 

  12. Elston CW, Ellis IO (1991) Pathological prognostic factors in breast cancer. I. The value of histological grade in breast cancer: experience from a large study with long-term follow-up. Histopathology 19:403–410

    Article  PubMed  CAS  Google Scholar 

  13. Wolff AC, Hammond ME, Schwartz JN, Hagerty KL, Allred DC, Cote RJ, Dowsett M, Fitzgibbons PL, Hanna WM, Langer A, McShane LM, Paik S, Pegram MD, Perez EA, Press MF, Rhodes A, Sturgeon C, Taube SE, Tubbs R, Vance GH, Van d V, Wheeler TM, Hayes DF (2007) American Society of Clinical Oncology/College of American Pathologists guideline recommendations for human epidermal growth factor receptor 2 testing in breast cancer. Arch Pathol Lab Med 131:18–43

    PubMed  CAS  Google Scholar 

  14. Cordell JL, Falini B, Erber WN, Ghosh AK, Abdulaziz Z, MacDonald S, Pulford KA, Stein H, Mason DY (1984) Immunoenzymatic labeling of monoclonal antibodies using immune complexes of alkaline phosphatase and monoclonal anti-alkaline phosphatase (APAAP complexes). J Histochem Cytochem 32:219–229

    Article  PubMed  CAS  Google Scholar 

  15. McShane LM, Altman DG, Sauerbrei W, Taube SE, Gion M, Clark GM (2006) REporting recommendations for tumor MARKer prognostic studies (REMARK). Breast Cancer Res Treat 100:229–235

    Article  PubMed  Google Scholar 

  16. Kraan J, Sleijfer S, Strijbos MH, Ignatiadis M, Peeters D, Pierga JY, Farace F, Riethdorf S, Fehm T, Zorzino L, Tibbe AG, Maestro M, Gisbert-Criado R, Denton G, de Bono JS, Dive C, Foekens JA, Gratama JW (2011) External quality assurance of circulating tumor cell enumeration using the Cell Search® system: a feasibility study. Cytometry B Clin Cytom 80:112–118

    PubMed  Google Scholar 

  17. Borgen E, Pantel K, Schlimok G, Muller P, Otte M, Renolen A, Ehnle S, Coith C, Nesland JM, Naume B (2006) A European interlaboratory testing of three well-known procedures for immunocytochemical detection of epithelial cells in bone marrow. Results from analysis of normal bone marrow. Cytom B Clin Cytom 70:400–409

    Article  CAS  Google Scholar 

  18. Krag DN, Kusminsky R, Manna E, Weaver D, Harlow SP, Covelli M, Stanley MA, McCahill L, Ittleman F, Leavitt B, Krag M, Amarante P (2009) Cytokeratin-positive cells in the bone marrow of breast cancer patients and noncancer donors. Appl Immunohistochem Mol Morphol 17:403–408

    Article  PubMed  Google Scholar 

  19. Coumans FA, Doggen CJ, Attard G, de Bono JS, Terstappen LW (2010) All circulating EpCAM+ CK+. Ann Oncol 21:1851–1857

    Article  PubMed  CAS  Google Scholar 

  20. Kim C, Paik S (2010) Gene-expression-based prognostic assays for breast cancer. Nat Rev Clin Oncol 7:340–347

    Article  PubMed  CAS  Google Scholar 

  21. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646–674

    Article  PubMed  CAS  Google Scholar 

  22. Meng S, Tripathy D, Frenkel EP, Shete S, Naftalis EZ, Huth JF, Beitsch PD, Leitch M, Hoover S, Euhus D, Haley B, Morrison L, Fleming TP, Herlyn D, Terstappen LW, Fehm T, Tucker TF, Lane N, Wang J, Uhr JW (2004) Circulating tumor cells in patients with breast cancer dormancy. Clin Cancer Res 10:8152–8162

    Article  PubMed  Google Scholar 

  23. Jordan NV, Johnson GL, Abell AN (2011) Tracking the intermediate stages of epithelial-mesenchymal transition in epithelial stem cells and cancer. Cell Cycle 10:2865–2873

    Article  PubMed  CAS  Google Scholar 

  24. Hall C, Krishnamurthy S, Lodhi A, Mosalpuria K, Kuerer HM, Meric-Bernstam F, Bedrosian I, Hunt KK, Lucci A (2010) Disseminated tumor cells in biologic subtypes of stage I–III breast cancer patients. Ann Surg Oncol 17:3252–3258

    Article  PubMed  Google Scholar 

  25. von Minckwitz G, Martin M (2012) Neoadjuvant treatments for triple-negative breast cancer (TNBC). Ann Oncol 23 Suppl 6:vi35–vi39

    Article  Google Scholar 

  26. Borgen E, Beiske K, Trachsel S, Nesland JM, Kvalheim G, Herstad TK, Schlichting E, Qvist H, Naume B (1998) Immunocytochemical detection of isolated epithelial cells in bone marrow: non-specific staining and contribution by plasma cells directly reactive to alkaline phosphatase. J Pathol 185:427–434

    Article  PubMed  CAS  Google Scholar 

  27. Schmidt M, Hellwig B, Hammad S, Othman A, Lohr M, Chen Z, Boehm D, Gebhard S, Petry I, Lebrecht A, Cadenas C, Marchan R, Stewart JD, Solbach C, Holmberg L, Edlund K, Kultima HG, Rody A et al (2012) A comprehensive analysis of human gene expression profiles identifies stromal immunoglobulin kappa C as a compatible prognostic marker in human solid tumors. Clin Cancer Res 18:2695–2703

    Article  PubMed  CAS  Google Scholar 

  28. Blankenstein T, Coulie PG, Gilboa E, Jaffee EM (2012) The determinants of tumour immunogenicity. Nat Rev Cancer 12:307–313

    Article  PubMed  CAS  Google Scholar 

  29. Kristensen VN, Vaske CJ, Ursini-Siegel J, Van LP, Nordgard SH, Sachidanandam R, Sorlie T, Warnberg F, Haakensen VD, Helland A, Naume B, Perou CM, Haussler D, Troyanskaya OG, Borresen-Dale AL (2012) Integrated molecular profiles of invasive breast tumors and ductal carcinoma in situ (DCIS) reveal differential vascular and interleukin signaling. Proc Natl Acad Sci USA 109:2802–2807

    Article  PubMed  CAS  Google Scholar 

  30. Stevens KN, Fredericksen Z, Vachon CM, Wang X, Margolin S, Lindblom A, Nevanlinna H, Greco D, Aittomaki K, Blomqvist C, Chang-Claude J, Vrieling A, Flesch-Janys D, Sinn HP, Wang-Gohrke S, Nickels S, Brauch H, Ko YD, Fischer HP, Schmutzler RK, Meindl A, Bartram CR, Schott S, Engel C, Godwin AK et al (2012) 19p13.1 is a triple-negative-specific breast cancer susceptibility locus. Cancer Res 72:1795–1803

    Article  PubMed  CAS  Google Scholar 

  31. DeNardo DG, Coussens LM (2007) Inflammation and breast cancer. Balancing immune response: crosstalk between adaptive and innate immune cells during breast cancer progression. Breast Cancer Res 9:212

    Article  PubMed  Google Scholar 

  32. Balic M, Rapp N, Stanzer S, Lin H, Strutz J, Szkandera J, Daidone MG, Samonigg H, Cote RJ, Dandachi N (2011) Novel immunofluorescence protocol for multimarker assessment of putative disseminating breast cancer stem cells. Appl Immunohistochem Mol Morphol 19:33–40

    Article  PubMed  CAS  Google Scholar 

  33. Fehm T, Muller V, Alix-Panabieres C, Pantel K (2008) Micrometastatic spread in breast cancer: detection, molecular characterization and clinical relevance. Breast Cancer Res 10(Suppl 1):S1

    Article  PubMed  Google Scholar 

  34. Mathiesen RR, Fjelldal R, Liestol K, Due EU, Geigl JB, Riethdorf S, Borgen E, Rye IH, Schneider IJ, Obenauf AC, Mauermann O, Nilsen G, Christian LO, Borresen-Dale AL, Pantel K, Speicher MR, Naume B, Baumbusch LO (2011) High-resolution analyses of copy number changes in disseminated tumor cells of patients with breast cancer. Int J Cancer 131:E405–E415

    Google Scholar 

  35. Riethdorf S, Pantel K (2008) Disseminated tumor cells in bone marrow and circulating tumor cells in blood of breast cancer patients: current state of detection and characterization. Pathobiology 75:140–148

    Article  PubMed  Google Scholar 

  36. Pierga JY, Bonneton C, Magdelenat H, Vincent-Salomon A, Nos C, Boudou E, Pouillart P, Thiery JP, de CP (2005) Real-time quantitative PCR determination of urokinase-type plasminogen activator receptor (uPAR) expression of isolated micrometastatic cells from bone marrow of breast cancer patients. Int J Cancer 114:291–298

    Article  PubMed  CAS  Google Scholar 

  37. Fehm T, Solomayer EF, Meng S, Tucker T, Lane N, Wang J, Gebauer G (2005) Methods for isolating circulating epithelial cells and criteria for their classification as carcinoma cells. Cytotherapy 7:171–185

    Article  PubMed  CAS  Google Scholar 

  38. Payne RE, Wang F, Su N, Krell J, Zebrowski A, Yague E, Ma XJ, Luo Y, Coombes RC (2012) Viable circulating tumour cell detection using multiplex RNA in situ hybridisation predicts progression-free survival in metastatic breast cancer patients. Br J Cancer 106:1790–1797

    Article  PubMed  CAS  Google Scholar 

  39. Bidard FC, Vincent-Salomon A, Sigal-Zafrani B, Dieras V, Mathiot C, Mignot L, Thiery JP, Sastre-Garau X, Pierga JY (2008) Prognosis of women with stage IV breast cancer depends on detection of circulating tumor cells rather than disseminated tumor cells. Ann Oncol 19:496–500

    Article  PubMed  Google Scholar 

  40. Pierga JY, Bonneton C, Vincent-Salomon A, de CP, Nos C, Blin N, Pouillart P, Thiery JP, Magdelenat H (2004) Clinical significance of immunocytochemical detection of tumor cells using digital microscopy in peripheral blood and bone marrow of breast cancer patients. Clin Cancer Res 10:1392–1400

    Article  PubMed  CAS  Google Scholar 

  41. Molloy TJ, Bosma AJ, Baumbusch LO, Synnestvedt M, Borgen E, Russnes HG, Schlichting E, van’t Veer LJ, Naume B (2011) The prognostic significance of tumour cell detection in the peripheral blood versus the bone marrow in 733 early-stage breast cancer patients. Breast Cancer Res 13:R61

    Article  PubMed  Google Scholar 

  42. Ignatiadis M, Perraki M, Apostolaki S, Politaki E, Xenidis N, Kafousi M, Stathopoulos E, Lianidou E, Sotiriou C, Georgoulias V, Mavroudis D (2007) Molecular detection and prognostic value of circulating cytokeratin-19 messenger RNA-positive and HER2 messenger RNA-positive cells in the peripheral blood of women with early-stage breast cancer. Clin Breast Cancer 7:883–889

    Article  PubMed  Google Scholar 

  43. Molloy TJ, Roepman P, Naume B, van’t Veer LJ (2012) A prognostic gene expression profile that predicts circulating tumor cell presence in breast cancer patients. PLoS ONE 7:e32426

    Article  PubMed  CAS  Google Scholar 

  44. Naume B, Zhao X, Synnestvedt M, Borgen E, Russnes HG, Lingjaerde OC, Stromberg M, Wiedswang G, Kvalheim G, Karesen R, Nesland JM, Borresen-Dale AL, Sorlie T (2007) Presence of bone marrow micrometastasis is associated with different recurrence risk within molecular subtypes of breast cancer. Mol Oncol 1:160–171

    Article  PubMed  Google Scholar 

  45. Woelfle U, Cloos J, Sauter G, Riethdorf L, Janicke F, van Diest P, Brakenhoff R, Pantel K (2003) Molecular signature associated with bone marrow micrometastasis in human breast cancer. Cancer Res 63:5679–5684

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank the staff at The Micrometastasis Laboratory, Department of Pathology, Radiumhospitalet, for their excellent technical assistance. The study was supported by The Research Council of Norway, South-Eastern Norway Regional Health Authority, The Norwegian Cancer Society, K. G. Jebsen Centre for Breast Cancer Research, and the European Commission within the 7th Framework Programme (The Miracle project).

Conflict of interest

The authors declare no conflicts of interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Naume.

Additional information

Synnestvedt and Borgen contributed equally to the manuscript.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Table 1

Cox multivariate analysis in patients receiving adjuvant systemic treatment (Adj). (DOC 35 kb)

Supplementary Table 2

Cox multivariate analysis. Prognostic significance of DTC categories according to primary tumour subgroups. (DOC 60 kb)

Supplementary Fig. 1

Survival analyses (DDFS and BCSS) for patients with (Pos) or without (Neg) QHC detected in the BM; for all No-Adj patients, and for all TN patients; only patient samples including ≥1.5x106 cells in the negative control included. P values were computed by log-rank test. (TIFF 510 kb)

Supplementary Fig. 2

Distant disease-free survival among No-Adj patients with (Pos) or without (Neg) the indicated DTC subcategory (TC versus UIC versus QHC) detected in the BM; for No-Adj HR +/HER2- patients, for No-Adj HER2 + patients (HR- or +) and for No-Adj TN patients. Due to missing data in the database for a few patients, the number of patients included in the various survival analyses differ. (TIFF 747 kb)

Supplementary Fig. 3

Breast cancer-specific survival among No-Adj patients with (Pos) or without (Neg) the indicated DTC subcategory (TC versus UIC versus QHC) detected in the BM; for No-Adj HR +/HER2- patients, for No-Adj HER + patients (HR- or +) and for No-Adj TN patients. Due to missing data in the database for a few patients, the number of patients included in the various survival analyses differ. (TIFF 721 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Synnestvedt, M., Borgen, E., Schlichting, E. et al. Disseminated tumour cells in the bone marrow in early breast cancer: morphological categories of immunocytochemically positive cells have different impact on clinical outcome. Breast Cancer Res Treat 138, 485–497 (2013). https://doi.org/10.1007/s10549-013-2439-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-013-2439-8

Keywords

Navigation