Skip to main content

Advertisement

Log in

Evaluation of the prognostic significance of disseminated tumor cells in the bone marrow of primary, non-metastatic breast cancer patients after a 7-year follow-up

  • Gynecologic Oncology
  • Published:
Archives of Gynecology and Obstetrics Aims and scope Submit manuscript

Abstract

Purpose

About 30% of primary, non-metastatic breast cancer patients show a relapse of the disease years after first diagnosis, probably due to early tumor cell spread to the bone marrow (BM). For disseminated tumor cells (DTCs) in the BM, tumor cell dormancy, stem cell-like features and discordant receptor status of DTCs as compared to the primary tumor have been described, explaining the failure of conventional therapies. Here, we demonstrate no prognostic impact of DTCs and explain these findings by early bisphosphonate intake.

Methods

Bone marrow aspirates of 394 patients with first diagnosis of breast cancer diagnosed between July 1997 and February 2003 were evaluated for DTCs, applying immunocytochemistry. In addition to the given therapy including chemotherapy, radiotherapy and anti-hormonal therapy, oral clodronate therapy was recommended for at least 2 years for all DTC-positive patients. BM results were correlated with clinical prognostic factors and overall survival (OS).

Results

Disseminated tumor cells were detected in 163/394 (41%) patients and significantly correlated with a histopathological lobular subtype (p = 0.032) and inversely with HER2 positivity (p = 0.01). After a median follow-up of 7 years, no significant differences with regard to OS could be demonstrated for DTC-positive patients as compared to patients with no DTCs in the BM at first diagnosis (p = 0.156).

Conclusions

In this study, we demonstrate no prognostic impact of DTCs, contradictory to previous findings. We speculate that the lack of impact of DTC-positivity on OS might be due to early clodronate intake, but further studies will have to prove whether the observed effect can be confirmed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Braun S, Vogl FD, Naume B, Janni W, Osborne MP, Coombes RC, Schlimok G, Diel IJ, Gerber B, Gebauer G, Pierga JY, Marth C, Oruzio D, Wiedswang G, Solomayer EF, Kundt G, Strobl B, Fehm T, Wong GY, Bliss J, Vincent-Salomon A, Pantel K (2005) A pooled analysis of bone marrow micrometastasis in breast cancer. N Engl J Med 353(8):793–802

    Article  CAS  PubMed  Google Scholar 

  2. Banys M, Krawczyk N, Fehm T (2014) The role and clinical relevance of disseminated tumor cells in breast cancer. Cancer 5:143–152

    Article  Google Scholar 

  3. Janni W, Vogl FD, Wiedswang G, Synnestvedt M, Fehm T, Jückstock J, Borgen E, Rack B, Braun S, Sommer H, Solomayer E, Pantel K, Nesland J, Friese K, Naume B (2011) Persistence of disseminated tumor cells in the bone marrow of breast cancer patients predicts increased risk for relapse—a European pooled analysis. Clin Cancer Res 17(9):2967–2976

    Article  PubMed  Google Scholar 

  4. Tjensvoll K, Oltedal S, Heikkilä R, Kvaioy JT, Gilje B, Reuben JM, Smaaland R, Nordgard O (2012) Persistent tumor cells in bone marrow of non-metastatic breast cancer after primary surgery are associated with inferior outcome. BMC Cancer 12:190

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Mathiesen RR, Borgen E, Renolen A, Lokkevik E, Nesland JM, Anker G, Ostenstad B, Lundgren S, Risberg T, Mjaaland I, Kvalheim G, Lonning PE, Naume B (2012) Persistence of disseminated tumor cells after neoadjuvant treatment for locally advanced breast cancer predicts poor survival. Breast Cancer Res 14(4):117

    Article  Google Scholar 

  6. Edge SB, Byrd DR, Compton CC et al (2010) AJCC Cancer Staging Manual, 7th edn. Springer, New York, pp 347–376

    Google Scholar 

  7. Harris L, Fritsche H, Mennel R, Norton L, Ravdin P, Taube S, Somerfield MR, Hayes DF, Bast RC Jr (2007) American Society of Clinical Oncology 2007 update of recommendations for the use of tumor markers in breast cancer. J Clin Oncol 25(33):5287–5312

    Article  CAS  PubMed  Google Scholar 

  8. Deng G, Krishnakumar S, Powell AA, Zhang H, Mindrinos MN, Telli ML, Davis RW, Jeffrey SS (2014) Single cell mutational analysis of PIK3CA in circulating tumor cells an metastases in breast cancer reveals heterogeneity, discordance and mutation persistence in cultured disseminated tumor cells from bone marrow. BMC Cancer 14:456

    Article  PubMed Central  PubMed  Google Scholar 

  9. Balic M, Lin H, Young L, Haws D, Giuliano A, McNamara G, Dater RH, Cote RJ (2011) Most early disseminated cancer cells detected in bone marrow of breast cancer patients have a putative breast cancer stem cell phenotype. Clin Cancer Res 12:5615–5621

    Article  Google Scholar 

  10. Reuben JM, Lee BN, Gao H, Cohen EN, Mego M, Giordano A, Wang X, Lodhi A, Krishnamurthy S, Hortobagyi GN, Cristofanilli M, Lucci A, Woodward WA (2011) Primary breast cancer patients with high risk clinicopathologic features have high percentages of bone marrow epithelial cells with ALDH activity and CD44(+)CD24(lo) cancer stem cell phenotype. Eur J Cancer 47(10):1527–1536

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Braun S, Schlimok G, Heumos I, Schaller G, Riethdorf L, Riethmüller G, Pantel K (2001) ErbB2 overexpression on occult metastatic cells in bone marrow predicts poor clinical outcome of stage I-III breast cancer patients. Cancer Res 61:1890–1895

    CAS  PubMed  Google Scholar 

  12. Solomayer EF, Becker S, Pergola-Becker G, Bachmann R, Krämer B, Vogel U, Neubauer H, Wallwiener D, Huober J, Fehm TN (2006) Comparison of HER2 status between primary tumor and disseminated tumor cells in primary breast cancer patients. Breast Cancer Res Treat 98:179–184

    Article  CAS  PubMed  Google Scholar 

  13. Fehm T, Krawczyk N, Solomayer EF, Becker-Pergola G, Dürr-Störzer S, Neubauer H, Seeger H, Staebler A (2008) ERalpha-status of disseminated tumour cells in bone marrow of primary breast cancer patients. Breast Cancer Res 10(5):76

    Article  Google Scholar 

  14. Hartkopf AD, Banys M, Meier-Stiegen F, Hahn M, Röhm C, Hoffmann J, Helms G, Taran FA, Wallwiener M, Walter C, Neubauer H, Wallwiener D, Fehm T (2013) The HER2 status of disseminated tumor cells in the bone marrow of early breast cancer patients is independent from primary tumor and predicts higher risk of relapse. Breast Cancer Res Treat 138(2):509–517

    Article  CAS  PubMed  Google Scholar 

  15. Diel IJ, Solomayer EF, Costa SD, Wallwiener D, Kaufmann M, Bastert G (1998) Reduction in new metastases in breast cancer with adjuvant clodronate treatment. N Engl J Med 339(6):357–363

    Article  CAS  PubMed  Google Scholar 

  16. Diel IJ, Jaschke A, Solomayer EF, Gollan C, Bastert G, Sohn C, Schuetz F (2008) Adjuvant oral clodronate improves the overall survival of primary breast cancer patients with micrometastases in bone marrow: a long term follow-up. Ann Oncol 9(12):2007–2011

    Article  Google Scholar 

  17. Gnant M, Mlineritsch B, Stoeger H, Luschin-Ebengreuth G, Heck D, Menzel C, Jikesz R et al (2007) Zoledronic acid combined with adjuvant endocrine therapy of tamoxifen versus anastrozole plus ovarian function suppression in premenopausal early breast cancer: final analysis oft he Austrian Breast and Colorectal Cancer Study Group Trial 12. Lancet Oncol 7:631–641

    Google Scholar 

  18. Coleman R, de Boer R, Eidtmann H, Liombart A, Davidson N, Neven P, von Minckwitz G, Sleeboom HP, Forbes J, Barrios C, Frassoldati A, Campbell I, Paija O, Martin N, Modi A, Bundred N (2013) Zoledronic acid (zoledronate) for postmenopausal women with early breast cancer receiving adjuvant letrozole (ZO-FAST study): final 60 months results. Ann Oncol 24(2):398–405

    Article  CAS  PubMed  Google Scholar 

  19. Coleman R, Cameron D, Dodwell D, Bell R, Wilson C, Rathbone E, Keane M, Gil M, Burkinshaw R, Grieve R, Barrett-Lee P, Ritchie D, Livesedge V, Hinsley S, Marshall H, Azure investigators (2014) Adjuvant zoledronic acid in patients with early breast cancer: final efficacy analysis oft he AZURE (BIG 01/04) randomised open-label phase 3 trial. Lancet Oncol 15(9):997–1006

    Article  CAS  PubMed  Google Scholar 

  20. Rack B, Juckstock J, Genss EM, Schoberth A, Schindlbeck C, Strobl B, Heinrigs M, Rammel G, Zwingers T, Sommer H, Friese K, Janni W (2010) Effect of zoledronate on persisting isolated tumour cells in patients with early breast cancer. Anticancer Res 30(5):1807–1813

    CAS  PubMed  Google Scholar 

  21. Hoffman O, Aktas B, Goldnau C, Oberhoff C, Kimmig R, Kasimir-Bauer S (2011) Effect of ibandronate on disseminated tumor cells in the bone marrow of patients with primary breast cancer: a pilot study. Anticancer Res 10:3623–3628

    Google Scholar 

  22. Banys M, Solomayer EF, Gebauer G, Janni W, Krwczyk K, Wackwitz B, Hirnie P, Wallwiener D, Fehm T (2013) Influence of zoledronic acid on disseminated tumor cells in bone marrow and survival: results of a prospective clinical trial. BMC Cancer 13:480

    Article  PubMed Central  PubMed  Google Scholar 

  23. Fehm T, Braun S, Müller V, Janni W, Gebauer G, Marth C, Schindlbeck C, Wallwiener D, Borgen E, Naume B, Pantel K (2006) A concept for the standardized detection of disseminated tumor cells in bone marrow of patients with primary breast cancer and its clinical implementation. Cancer 197:885–892

    Article  Google Scholar 

  24. Borgen E, Naume B, Nesland JM, Kvalheim G, Beiske K, Fodstad O, Diel I, Solomayer EF, Theocharous P, Coombes RC, Smith BM, Wunder E, Marolleau JP, Garcia J, Pantel K (1999) Standardization of the immunocytochemical detection of cancer cells in BM and blood: I. Establishment of objective criteria for the evaluation of immunostained cells: The European ISHAGE Working Group for Standardization of Tumor Cell Detection. Cytotherapy 5:377–388

    Article  Google Scholar 

  25. Ellis IO, Schnitt SJ, Sastre-Garau X, Bussolati G, Tavassoli FA (2003) Invasive breast carcinoma. In: Tavassoli FA, Devilee P (eds) World Health Organization Classification of Tumours. Tumours of the Breast and Female Genital Organs. IARC Press, Lyon, pp 13–59

    Google Scholar 

  26. Sobin LH, Gospodarowicz MK, Wittekind C (2009) International Union against Cancer. In: TNM classification of malignant tumours, 7th edn. Wiley, New York

    Google Scholar 

  27. Lal P, Salazar PA, Hudis CA, Ladanyi M, Chen B (2004) HER-2 testing in breast cancer using immunohistochemical analysis and fluorescence in situ hybridization: a single-institution experience of 2,279 cases and comparison of dual-color and single-color scoring. Am J Clin Pathol 121:631–636

    Article  PubMed  Google Scholar 

  28. Hoffmann O, Aktas B, Goldnau C, Heubner M, Oberhoff C, Kimmig R, Kasimir-Bauer S (2011) Effect of ibandronate on disseminated tumor cells in the bone marrow of patients with primary breast cancer: a pilot study. Anticancer Res 31(10):3623–3628

    CAS  PubMed  Google Scholar 

  29. Stresing V, Daubiné F, Benzaid I, Mönkkönen H, Clézardin P (2007) Bisphosphonates in cancer therapy. Cancer Lett 257(1):16–35

    Article  CAS  PubMed  Google Scholar 

  30. Diel I, Nietz U (2014) Guidelines of AGO Breast Committee. http://www.ago-online.de/de/infothek-fuer-aerzte/leitlinienempfehlungen/mamma/. Accessed 27 Mar 2014

  31. Solomayer EF, Gebauer G, Hirnle P, Janni W, Lück HJ, Becker S, Huober J, Krämer B, Wackwitz B, Wallwiener D, Fehm T (2012) Influence of zoledronic acid on disseminated tumor cells in primary breast cancer patients. Ann Oncol 23(9):2271–2277

    Article  PubMed  Google Scholar 

  32. Coleman R, Gnant M, Paterson A et al (2013) Effects of bisphosphonate treatment on recurrence and cause-specific mortality in women with early breast cancer: a meta-analysis of individual patient data from randomized trials. San Antonio Breast Cancer Symposium pp 4–7

  33. Synnestvedt M, Borgen E, Wist E, Wiedswang G, Weyde K, Risberg T, Kersten C, Mjaaland I, Vindi L, Schirmer C, Nesland JM, Naume B (2012) Disseminated tumor cells as selection marker and monitoring tool for secondary adjuvant treatment in early breast cancer. Descriptive results from an intervention study. BMC Cancer 12:616

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Hartkopf AD, Taran FA, Wallwiener M, Hahn M, Becker S, Solomayer EF, Brucker SY, Fehm TN, Wallwiener D (2014) Prognostic relevance of disseminated tumour cells from the bone marrow of early stage breast cancer patients—results from a large single-centre analysis. Eur J Cancer 50(15):2550–2559

    Article  PubMed  Google Scholar 

  35. Falck AK, Bendahl PO, Ingvar C, Isola J, Jönsson PE, Lindblom P, Lövgren K, Rennstam K, Fernö M, Rydén L (2012) Analysis of and prognostic information from disseminated tumour cells in bone marrow in primary breast cancer: a prospective observational study. BMC Cancer 125(3):729–738

    Google Scholar 

  36. Bozionellou V, Mavroudis D, Perraki M, Papadopoulos S, Apostolaki S, Stathopoulos E, Stathopoulou A, Lianidou E, Georgoulias V (2004) Trastuzumab administration can effectively target chemotherapy-resistant cytokeratin-19 messenger RNApositive tumor cells in the peripheral blood and bone marrow of patients with breast cancer. Clin Cancer Res 10:8185–8194

    Article  CAS  PubMed  Google Scholar 

  37. Georgoulias V, Bozionelou V, Agelaki S, Perraki M, Apostolaki S, Kallergi G, Kalbakis K, Xyrafas A, Mavroudis D (2012) Trastuzumab decreases the incidence of clinical relapses in patients with early breast cancer presenting chemotherapy- resistant CK-19mRNA-positive circulating tumor cells: results of a randomized phase II study. Ann Oncol 23(7):1744–1750

    Article  CAS  PubMed  Google Scholar 

  38. Paik S, Kim C, Wolmark N (2008) HER2 status and benefit from adjuvant trastuzumab in breast cancer. N Engl J Med 358:1409–1411

    Article  CAS  PubMed  Google Scholar 

  39. Ithimakin S, Day KC, Malik F, Zen Q, Dawsey SJ, Bersano-Begey TF, Quraishi AA, Ignatoski KW, Daignault S, Davis A, Hall CL, Palanisamy N, Heath AN, Tawakkol N, Luther TK, Clouthier SG, Chadwick WA, Day ML, Kleer CG, Thomas DG, Hayes DF, Korkaya H, Wicha MS (2013) HER2 drives luminal breast cancer stems cells in the abscense of HER2 amplification: implications for efficacy of adjuvant trastuzumab. Cancer Res 73(5):1635–1646

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Abraham BK, Fritz P, McClellan M, Hauptvogel P, Athelogou M, Brauch H (2005) Prevalence of CD44+/CD24−/low cells in breast cancer may not be associated with clinical outcome but may favor distant metastasis. Clin Cancer Res 11:1154–1159

    CAS  PubMed  Google Scholar 

  41. Synnestvedt M, Borgen E, Schlichting E, Schirmer CB, Renolen A, Giercksky KE, Nesland JM, Naume B (2013) Disseminated tumour cells in the bone marrow in early breast cancer: morphological categories of immunocytochemically positive cells have different impact on clinical outcome. Breast Cancer Res Treat 138(2):485–497

    Article  CAS  PubMed  Google Scholar 

  42. Krawczyk N, Hartkopf A, Banys M, Meier-Stiegen F, Staebler A, Wallwiener M, Röhm C, Hoffmann J, Hahn M, Fehm T (2014) Prognostic relevance of induced and spontaneous apoptosis of disseminated tumor cells in primary breast cancer patients. BMC Cancer 14:394

    Article  PubMed Central  PubMed  Google Scholar 

  43. Møller EK, Kumar P, Voet T, Peterson A, Van Loo P, Mathiesen RR, Fjelldal R, Grundstad J, Borgen E, Baumbusch LO, Naume B, Børresen-Dale AL, White KP, Nord S, Kristensen VN (2013) Next-generation sequencing of disseminated tumor cells. Front Oncol 3:320

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. Hoffmann.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hoffmann, O., Schroer-Zuendorf, I.A., Kasimir-Bauer, S. et al. Evaluation of the prognostic significance of disseminated tumor cells in the bone marrow of primary, non-metastatic breast cancer patients after a 7-year follow-up. Arch Gynecol Obstet 292, 1117–1125 (2015). https://doi.org/10.1007/s00404-015-3748-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00404-015-3748-4

Keywords

Navigation