Skip to main content

Advertisement

Log in

IL-21 gene polymorphism is associated with the prognosis of breast cancer in Chinese populations

  • Epidemiology
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

Interleukin (IL)-21, which is secreted by activated CD4+ T cells and NKT cells, has been found to be able to influence the humoral and cell-mediated immune responses and have potent antitumor activity in animal models. This study was to investigate the impact of genetic polymorphisms in IL-21 on survival of breast cancer. Four TagSNPs of IL-21 (rs12508721C>T, rs907715G>A, rs13143866G>A, rs2221903A>G) were selected and then genotyped in 891 patients with breast cancer in Eastern and Southern Chinese populations. We then examined the associations between these SNPs and overall survival. Potential function of rs12508721C>T and association between this variation and breast cancer prognosis were further studied. Overall, 121 of the patients had died over the followed-up period of 5 years. The IL-21 rs12508721T allele predicted longer five-year survival (HR = 0.347, 95 % CI = 0.187–0.644, P < 0.0001) in the discovery cohort, the independent validation cohort (HR = 0.429, 95 % CI = 0.244–0.755, P = 0.012), and combined group (HR = 0.447, 95 % CI = 0.301–0.667, P < 0.0001). Furthermore, our luciferase assay revealed that rs12508721T variant allele had a higher transcription activity and the RT-PCR and ELISA assay showed that rs12508721 variant genotypes (CT and TT) carriers have more IL-21 expression than CC carriers (P < 0.05). Our present study established a robust association between the functional polymorphism (rs12508721C>T) in IL-21 and prognosis of breast cancer, indicating that this polymorphism may be a potential biomarker for prognosis of breast cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Ferlay J, Shin HR, Bray F, Forman D, Mathers C, Parkin DM (2010) Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. Int J Cancer 127(12):2893–2917. doi:10.1002/ijc.25516

    Article  PubMed  CAS  Google Scholar 

  2. Sariego J (2010) Breast cancer in the young patient. Am Surg 76(12):1397–1400

    PubMed  Google Scholar 

  3. Standish LJ, Sweet ES, Novack J, Wenner CA, Bridge C, Nelson A, Martzen M, Torkelson C (2008) Breast cancer and the immune system. J Soc Integr Oncol 6(4):158–168

    PubMed  Google Scholar 

  4. Sondergaard H, Skak K (2009) IL-21: roles in immunopathology and cancer therapy. Tissue Antigens 74(6):467–479. doi:10.1111/j.1399-0039.2009.01382.x

    Article  PubMed  CAS  Google Scholar 

  5. Spolski R, Leonard WJ (2008) Interleukin-21: basic biology and implications for cancer and autoimmunity. Annu Rev Immunol 26:57–79. doi:10.1146/annurev.immunol.26.021607.090316

    Article  PubMed  CAS  Google Scholar 

  6. Kishida T, Asada H, Itokawa Y, Cui FD, Shin-Ya M, Gojo S, Yasutomi K, Ueda Y, Yamagishi H, Imanishi J, Mazda O (2003) Interleukin (IL)-21 and IL-15 genetic transfer synergistically augments therapeutic antitumor immunity and promotes regression of metastatic lymphoma. Mol Ther 8(4):552–558

    Article  PubMed  CAS  Google Scholar 

  7. Ma HL, Whitters MJ, Konz RF, Senices M, Young DA, Grusby MJ, Collins M, Dunussi-Joannopoulos K (2003) IL-21 activates both innate and adaptive immunity to generate potent antitumor responses that require perforin but are independent of IFN-gamma. J Immunol 171(2):608–615

    PubMed  CAS  Google Scholar 

  8. Zeng R, Spolski R, Finkelstein SE, Oh S, Kovanen PE, Hinrichs CS, Pise-Masison CA, Radonovich MF, Brady JN, Restifo NP, Berzofsky JA, Leonard WJ (2005) Synergy of IL-21 and IL-15 in regulating CD8 + T cell expansion and function. J Exp Med 201(1):139–148. doi:10.1084/jem.20041057

    Article  PubMed  CAS  Google Scholar 

  9. Brady J, Hayakawa Y, Smyth MJ, Nutt SL (2004) IL-21 induces the functional maturation of murine NK cells. J Immunol 172(4):2048–2058

    PubMed  CAS  Google Scholar 

  10. Di Carlo E, Comes A, Orengo AM, Rosso O, Meazza R, Musiani P, Colombo MP, Ferrini S (2004) IL-21 induces tumor rejection by specific CTL and IFN-gamma-dependent CXC chemokines in syngeneic mice. J Immunol 172(3):1540–1547

    PubMed  Google Scholar 

  11. Stolfi C, Pallone F, Macdonald TT, Monteleone G (2012) Interleukin-21 in cancer immunotherapy: friend or foe? Oncoimmunology 1(3):351–354. doi:10.4161/onci.191222011ONCOIMM0106R

    Article  PubMed  Google Scholar 

  12. Jiang L, Deng J, Zhu X, Zheng J, You Y, Li N, Wu H, Lu J, Zhou Y (2012) CD44 rs13347 C>T polymorphism predicts breast cancer risk and prognosis in Chinese populations. Breast Cancer Res 14(4):R105. doi:10.1186/bcr3225

    Article  PubMed  CAS  Google Scholar 

  13. McShane LM, Altman DG, Sauerbrei W, Taube SE, Gion M, Clark GM (2006) REporting recommendations for tumor MARKer prognostic studies (REMARK). Breast Cancer Res Treat 100(2):229–235. doi:10.1007/s10549-006-9242-8

    Article  PubMed  Google Scholar 

  14. Jurinke C, Oeth P, van den Boom D (2004) MALDI-TOF mass spectrometry: a versatile tool for high-performance DNA analysis. Mol Biotechnol 26(2):147–164. doi:10.1385/MB:26:2:147

    Article  PubMed  CAS  Google Scholar 

  15. Jiang L, Zhang C, Li Y, Yu X, Zheng J, Zou P, Bin X, Lu J, Zhou Y (2011) A non-synonymous polymorphism Thr115Met in the EpCAM gene is associated with an increased risk of breast cancer in Chinese population. Breast Cancer Res Treat 126(2):487–495. doi:10.1007/s10549-010-1094-6

    Article  PubMed  CAS  Google Scholar 

  16. Lehmann U, Kreipe H (2001) Real-time PCR analysis of DNA and RNA extracted from formalin-fixed and paraffin-embedded biopsies. Methods 25(4):409–418. doi:10.1006/meth.2001.1263S1046-2023(01)91263-0

    Article  PubMed  CAS  Google Scholar 

  17. Zheng J, Jiang L, Zhang L, Yang L, Deng J, You Y, Li N, Wu H, Li W, Lu J, Zhou Y (2012) Functional genetic variations in the IL-23 receptor gene are associated with risk of breast, lung and nasopharyngeal cancer in Chinese populations. Carcinogenesis. doi:10.1093/carcin/bgs307

    Google Scholar 

  18. Habib T, Senadheera S, Weinberg K, Kaushansky K (2002) The common gamma chain (gamma c) is a required signaling component of the IL-21 receptor and supports IL-21-induced cell proliferation via JAK3. Biochemistry 41(27):8725–8731

    Article  PubMed  CAS  Google Scholar 

  19. Leonard WJ, Spolski R (2005) Interleukin-21: a modulator of lymphoid proliferation, apoptosis and differentiation. Nat Rev Immunol 5(9):688–698. doi:10.1038/nri1688

    Article  PubMed  CAS  Google Scholar 

  20. Kovanen PE, Leonard WJ (2004) Cytokines and immunodeficiency diseases: critical roles of the gamma(c)-dependent cytokines interleukins 2, 4, 7, 9, 15, and 21, and their signaling pathways. Immunol Rev 202:67–83. doi:10.1111/j.0105-2896.2004.00203.x

    Article  PubMed  CAS  Google Scholar 

  21. Parrish-Novak J, Dillon SR, Nelson A, Hammond A, Sprecher C, Gross JA, Johnston J, Madden K, Xu W, West J, Schrader S, Burkhead S, Heipel M, Brandt C, Kuijper JL, Kramer J, Conklin D, Presnell SR, Berry J, Shiota F, Bort S, Hambly K, Mudri S, Clegg C, Moore M, Grant FJ, Lofton-Day C, Gilbert T, Rayond F, Ching A, Yao L, Smith D, Webster P, Whitmore T, Maurer M, Kaushansky K, Holly RD, Foster D (2000) Interleukin 21 and its receptor are involved in NK cell expansion and regulation of lymphocyte function. Nature 408(6808):57–63. doi:10.1038/35040504

    Article  PubMed  CAS  Google Scholar 

  22. Monteleone G, Caruso R, Fina D, Peluso I, Gioia V, Stolfi C, Fantini MC, Caprioli F, Tersigni R, Alessandroni L, MacDonald TT, Pallone F (2006) Control of matrix metalloproteinase production in human intestinal fibroblasts by interleukin 21. Gut 55(12):1774–1780. doi:10.1136/gut.2006.093187

    Article  PubMed  CAS  Google Scholar 

  23. Parrish-Novak J, Foster DC, Holly RD, Clegg CH (2002) Interleukin-21 and the IL-21 receptor: novel effectors of NK and T cell responses. J Leukoc Biol 72(5):856–863

    PubMed  CAS  Google Scholar 

  24. Brandt K, Singh PB, Bulfone-Paus S, Ruckert R (2007) Interleukin-21: a new modulator of immunity, infection, and cancer. Cytokine Growth Factor Rev 18(3–4):223–232. doi:10.1016/j.cytogfr.2007.04.003

    Article  PubMed  CAS  Google Scholar 

  25. Moroz A, Eppolito C, Li Q, Tao J, Clegg CH, Shrikant PA (2004) IL-21 enhances and sustains CD8 + T cell responses to achieve durable tumor immunity: comparative evaluation of IL-2, IL-15, and IL-21. J Immunol 173(2):900–909

    PubMed  CAS  Google Scholar 

  26. Sondergaard H, Frederiksen KS, Thygesen P, Galsgaard ED, Skak K, Kristjansen PE, Odum N, Kragh M (2007) Interleukin 21 therapy increases the density of tumor infiltrating CD8 + T cells and inhibits the growth of syngeneic tumors. Cancer Immunol Immunother 56(9):1417–1428. doi:10.1007/s00262-007-0285-4

    Article  PubMed  Google Scholar 

  27. Park YK, Shin DJ, Cho D, Kim SK, Lee JJ, Shin MG, Ryang DW, Lee JS, Park MH, Yoon JH, Jegal YJ (2012) Interleukin-21 increases direct cytotoxicity and IFN-gamma production of ex vivo expanded NK cells towards breast cancer cells. Anticancer Res 32(3):839–846

    PubMed  CAS  Google Scholar 

  28. Pure E, Allison JP, Schreiber RD (2005) Breaking down the barriers to cancer immunotherapy. Nat Immunol 6(12):1207–1210. doi:10.1038/ni1205-1207

    Article  PubMed  CAS  Google Scholar 

  29. Zhang L, Conejo-Garcia JR, Katsaros D, Gimotty PA, Massobrio M, Regnani G, Makrigiannakis A, Gray H, Schlienger K, Liebman MN, Rubin SC, Coukos G (2003) Intratumoral T cells, recurrence, and survival in epithelial ovarian cancer. N Engl J Med 348(3):203–213. doi:10.1056/NEJMoa020177348/3/203

    Article  PubMed  CAS  Google Scholar 

  30. Zheng J, Yu X, Jiang L, Xiao M, Bai B, Lu J, Zhou Y (2010) Association between the cytotoxic T-lymphocyte antigen 4 +49G>A polymorphism and cancer risk: a meta-analysis. BMC Cancer 10:522. doi:10.1186/1471-2407-10-522

    Article  PubMed  Google Scholar 

  31. Kajitani K, Tanaka Y, Arihiro K, Kataoka T, Ohdan H (2012) Mechanistic analysis of the antitumor efficacy of human natural killer cells against breast cancer cells. Breast Cancer Res Treat 134(1):139–155. doi:10.1007/s10549-011-1944-x

    Article  PubMed  Google Scholar 

  32. Cullen SP, Martin SJ (2008) Mechanisms of granule-dependent killing. Cell Death Differ 15(2):251–262. doi:10.1038/sj.cdd.4402244

    Article  PubMed  CAS  Google Scholar 

  33. Pardo J, Aguilo JI, Anel A, Martin P, Joeckel L, Borner C, Wallich R, Mullbacher A, Froelich CJ, Simon MM (2009) The biology of cytotoxic cell granule exocytosis pathway: granzymes have evolved to induce cell death and inflammation. Microbes Infect 11(4):452–459. doi:10.1016/j.micinf.2009.02.004

    Article  PubMed  CAS  Google Scholar 

  34. Ugai S, Shimozato O, Kawamura K, Wang YQ, Yamaguchi T, Saisho H, Sakiyama S, Tagawa M (2003) Expression of the interleukin-21 gene in murine colon carcinoma cells generates systemic immunity in the inoculated hosts. Cancer Gene Ther 10(3):187–192. doi:10.1038/sj.cgt.77005527700552

    Article  PubMed  CAS  Google Scholar 

  35. Ugai S, Shimozato O, Yu L, Wang YQ, Kawamura K, Yamamoto H, Yamaguchi T, Saisho H, Sakiyama S, Tagawa M (2003) Transduction of the IL-21 and IL-23 genes in human pancreatic carcinoma cells produces natural killer cell-dependent and -independent antitumor effects. Cancer Gene Ther 10(10):771–778. doi:10.1038/sj.cgt.77006307700630

    Article  PubMed  CAS  Google Scholar 

  36. Sawalha AH, Kaufman KM, Kelly JA, Adler AJ, Aberle T, Kilpatrick J, Wakeland EK, Li QZ, Wandstrat AE, Karp DR, James JA, Merrill JT, Lipsky P, Harley JB (2008) Genetic association of interleukin-21 polymorphisms with systemic lupus erythematosus. Ann Rheum Dis 67(4):458–461. doi:10.1136/ard.2007.075424

    Article  PubMed  CAS  Google Scholar 

  37. Ding L, Wang S, Chen GM, Leng RX, Pan HF, Ye DQ (2012) A single nucleotide polymorphism of IL-21 gene is associated with systemic lupus erythematosus in a Chinese population. Inflammation. doi:10.1007/s10753-012-9497-7

    Google Scholar 

  38. Thompson SD, Sudman M, Ramos PS, Marion MC, Ryan M, Tsoras M, Weiler T, Wagner M, Keddache M, Haas JP, Mueller C, Prahalad S, Bohnsack J, Wise CA, Punaro M, Zhang D, Rose CD, Comeau ME, Divers J, Glass DN, Langefeld CD (2010) The susceptibility loci juvenile idiopathic arthritis shares with other autoimmune diseases extend to PTPN2, COG6, and ANGPT1. Arthritis Rheum 62(11):3265–3276. doi:10.1002/art.27688

    Article  PubMed  CAS  Google Scholar 

  39. Jia HY, Zhang ZG, Gu XJ, Guo T, Cui B, Ning G, Zhao YJ (2011) Association between interleukin 21 and Graves’ disease. Genet Mol Res 10(4):3338–3346. doi:10.4238/2011.October.31.6

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the National Natural Scientific Foundation of China grants 81001278, 81171895, and 81072366; A Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions, Jiangsu Provincial Natural Science Foundation (No. BK2011297) and the Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry (No. 20101561).

Conflict of interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yifeng Zhou.

Additional information

Yonghe You and Jieqiong Deng contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

You, Y., Deng, J., Zheng, J. et al. IL-21 gene polymorphism is associated with the prognosis of breast cancer in Chinese populations. Breast Cancer Res Treat 137, 893–901 (2013). https://doi.org/10.1007/s10549-012-2401-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-012-2401-1

Keywords

Navigation