Skip to main content

Advertisement

Log in

A non-synonymous polymorphism Thr115Met in the EpCAM gene is associated with an increased risk of breast cancer in Chinese population

  • Epidemiology
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

As a tumor-associated antigen and a surface marker of breast cancer stem cells (BCSCs), epithelial cell adhesion molecule (EpCAM) plays an important role in not only cell adhesion, morphogenesis, metastases but also carcinogenesis. A non-synonymous C/T polymorphism (rs1126497) in exon3 of EpCAM causes a transition of 115 amino acid from Met to Thr. Another polymorphism (A/G, rs1421) in the 3′UTR causes loss of has-miR-1183 binding. A multiple independent case–control analysis was performed to assess the association between EpCAM genotypes and breast cancer risk. We observed that the variant EpCAM genotype (rs1126497 CT, and TT) was associated with substantially increased risk of breast cancer. Genotyping a total of 1643 individuals with breast cancer and 1818 control subjects in Eastern and Southern Chinese populations showed that rs1126497 CT + TT genotype had an odd ratio of 1.40 (95% confidence interval, 1.16–1.57) for developing breast cancer compared with CC genotype. The allele T increases the risk of breast cancer in a dose-dependent response manner (P trend < 0.001). Moreover, compared to breast cancer patients carrying the CC genotype, the EpCAM SNP rs1126497 CT or TT carrier was significantly associated with early breast cancer onset (P = 0.0023). However, no significant difference was found in genotype frequencies at the rs1421 A/G site between cases and controls. These findings suggest that M115T polymorphism in EpCAM may be a genetic modifier for developing breast cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

BMI:

Body mass index

CI:

Confidence interval

EpCAM:

Epithelial cell adhesion molecule

MAF:

Minor allele frequency

OR:

Odds ratio

SNP:

Single nucleotide polymorphism

References

  1. Feig SA, Hendrick RE (1997) Radiation risk from screening mammography of women aged 40–49 years. J Natl Cancer Inst Monogr 22:119–124

    PubMed  Google Scholar 

  2. Chlebowski RT, Blackburn GL, Thomson CA, Nixon DW, Shapiro A, Hoy MK, Goodman MT, Giuliano AE, Karanja N, McAndrew P, Hudis C, Butler J, Merkel D, Kristal A, Caan B, Michaelson R, Vinciguerra V, Del Prete S, Winkler M, Hall R, Simon M, Winters BL, Elashoff RM (2006) Dietary fat reduction and breast cancer outcome: interim efficacy results from the women’s intervention nutrition study. J Natl Cancer Inst 98(24):1767–1776. doi:98/24/1767[pii]10.1093/jnci/djj494

    Article  PubMed  Google Scholar 

  3. Boffetta P, Hashibe M, La Vecchia C, Zatonski W, Rehm J (2006) The burden of cancer attributable to alcohol drinking. Int J Cancer 119(4):884–887. doi:10.1002/ijc.21903

    Article  PubMed  CAS  Google Scholar 

  4. Yager JD, Davidson NE (2006) Estrogen carcinogenesis in breast cancer. N Engl J Med 354(3):270–282. doi:354/3/270[pii]10.1056/NEJMra050776

    Article  PubMed  CAS  Google Scholar 

  5. Andrieu N, Clavel F, Auquier A, Le MG, Gairard B, Piana L, Bremond A, Lansac J, Flamant R, Renaud R (1993) Variations in the risk of breast cancer associated with a family history of breast cancer according to age at onset and reproductive factors. J Clin Epidemiol 46(9):973–980. doi:0895-4356(93)90164-V[pii]

    Article  PubMed  CAS  Google Scholar 

  6. Reya T, Morrison SJ, Clarke MF, Weissman IL (2001) Stem cells, cancer, and cancer stem cells. Nature 414(6859):105–111. doi:10.1038/3510216735102167[pii]

    Article  PubMed  CAS  Google Scholar 

  7. Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF (2003) Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci USA 100(7):3983–3988. doi:10.1073/pnas.05302911000530291100[pii]

    Article  PubMed  CAS  Google Scholar 

  8. Clarke MF (2005) A self-renewal assay for cancer stem cells. Cancer Chemother Pharmacol 1(56):64–68. doi:10.1007/s00280-005-0097-1

    Article  Google Scholar 

  9. Soltysova A, Altanerova V, Altaner C (2005) Cancer stem cells. Neoplasma 52(6):435–440

    PubMed  CAS  Google Scholar 

  10. Ratajczak MZ (2005) Cancer stem cells–normal stem cells “jedi” that went over to the “dark side”. Folia Histochem Cytobiol 43(4):175–181

    PubMed  CAS  Google Scholar 

  11. Sales KM, Winslet MC, Seifalian AM (2007) Stem cells and cancer: an overview. Stem Cell Rev 3(4):249–255. doi:10.1007/s12015-007-9002-0

    Article  PubMed  CAS  Google Scholar 

  12. Luo J, Yin X, Ma T, Lu J (2010) Stem cells in normal mammary gland and breast cancer. Am J Med Sci 339(4):366–370. doi:10.1097/MAJ.0b013e3181cad964

    PubMed  Google Scholar 

  13. Marhaba R, Klingbeil P, Nuebel T, Nazarenko I, Buechler MW, Zoeller M (2008) Cd44 and epcam: cancer-initiating cell markers. Curr Mol Med 8(8):784–804

    Article  PubMed  CAS  Google Scholar 

  14. O’Brien CA, Pollett A, Gallinger S, Dick JE (2007) A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature 445(7123):106–110. doi:nature05372[pii]10.1038/nature05372

    Article  PubMed  Google Scholar 

  15. Litvinov SV, Bakker HA, Gourevitch MM, Velders MP, Warnaar SO (1994) Evidence for a role of the epithelial glycoprotein 40 (ep-cam) in epithelial cell–cell adhesion. Cell Adhes Commun 2(5):417–428

    Article  PubMed  CAS  Google Scholar 

  16. Trzpis M, McLaughlin PM, de Leij LM, Harmsen MC (2007) Epithelial cell adhesion molecule: more than a carcinoma marker and adhesion molecule. Am J Pathol 171(2):386–395. doi:ajpath.2007.070152[pii]10.2353/ajpath.2007.070152

    Article  PubMed  CAS  Google Scholar 

  17. Osta WA, Chen Y, Mikhitarian K, Mitas M, Salem M, Hannun YA, Cole DJ, Gillanders WE (2004) Epcam is overexpressed in breast cancer and is a potential target for breast cancer gene therapy. Cancer Res 64(16):5818–5824. doi:10.1158/0008-5472CAN-04-075464/16/5818[pii]

    Article  PubMed  CAS  Google Scholar 

  18. Balzar M, Winter MJ, de Boer CJ, Litvinov SV (1999) The biology of the 17-1a antigen (ep-cam). J Mol Med 77(10):699–712

    Article  PubMed  CAS  Google Scholar 

  19. Aubele M, Werner M (1999) Heterogeneity in breast cancer and the problem of relevance of findings. Anal Cell Pathol 19(2):53–58

    PubMed  CAS  Google Scholar 

  20. Golub TR (2001) Genome-wide views of cancer. N Engl J Med 344(8):601–602

    Article  PubMed  CAS  Google Scholar 

  21. Lu J, Wang LE, Xiong P, Sturgis EM, Spitz MR, Wei Q (2007) 172 g > t variant in the 5′ untranslated region of DNA repair gene rad51 reduces risk of squamous cell carcinoma of the head and neck and interacts with a p53 codon 72 variant. Carcinogenesis 28(5):988–994. doi:bgl225[pii]10.1093/carcin/bgl225

    Article  PubMed  CAS  Google Scholar 

  22. Lu J, Wei Q, Bondy ML, Yu TK, Li D, Brewster A, Shete S, Sahin A, Meric-Bernstam F, Wang LE (2006) Promoter polymorphism (−786t > c) in the endothelial nitric oxide synthase gene is associated with risk of sporadic breast cancer in non-hispanic white women age younger than 55 years. Cancer 107(9):2245–2253. doi:10.1002/cncr.22269

    Article  PubMed  CAS  Google Scholar 

  23. Munz M, Baeuerle PA, Gires O (2009) The emerging role of epcam in cancer and stem cell signaling. Cancer Res 69(14):5627–5629. doi:0008-5472.CAN-09-0654[pii]10.1158/0008-5472.CAN-09-0654

    Article  PubMed  CAS  Google Scholar 

  24. Maetzel D, Denzel S, Mack B, Canis M, Went P, Benk M, Kieu C, Papior P, Baeuerle PA, Munz M, Gires O (2009) Nuclear signalling by tumour-associated antigen epcam. Nat Cell Biol 11(2):162–171. doi:ncb1824[pii]10.1038/ncb1824

    Article  PubMed  CAS  Google Scholar 

  25. Huelsken J, Behrens J (2002) The wnt signalling pathway. J Cell Sci 115(Pt 21):3977–3978

    Article  PubMed  CAS  Google Scholar 

  26. Korswagen HC, Herman MA, Clevers HC (2000) Distinct beta-catenins mediate adhesion and signalling functions in C. elegans. Nature 406(6795):527–532. doi:10.1038/35020099

    Article  PubMed  CAS  Google Scholar 

  27. Jaenisch R, Young R (2008) Stem cells, the molecular circuitry of pluripotency and nuclear reprogramming. Cell 132(4):567–582. doi:S0092-8674(08)00115-3[pii]10.1016/j.cell.2008.01.015

    Article  PubMed  CAS  Google Scholar 

  28. Chong JM, Speicher DW (2001) Determination of disulfide bond assignments and n-glycosylation sites of the human gastrointestinal carcinoma antigen ga733–2 (co17–1a, egp, ks1–4, ksa, and ep-cam). J Biol Chem 276(8):5804–5813. doi:10.1074/jbc.M008839200M008839200[pii]

    Article  PubMed  CAS  Google Scholar 

  29. Braun S, Pantel K (1998) Prognostic significance of micrometastatic bone marrow involvement. Breast Cancer Res Treat 52(1–3):201–216

    Article  PubMed  CAS  Google Scholar 

  30. Trebak M, Begg GE, Chong JM, Kanazireva EV, Herlyn D, Speicher DW (2001) Oligomeric state of the colon carcinoma-associated glycoprotein ga733–2 (ep-cam/egp40) and its role in ga733-mediated homotypic cell–cell adhesion. J Biol Chem 276(3):2299–2309. doi:10.1074/jbc.M004770200M004770200[pii]

    Article  PubMed  CAS  Google Scholar 

  31. Baeuerle PA, Gires O (2007) Epcam (cd326) finding its role in cancer. Br J Cancer 96(3):417–423. doi:6603494[pii]10.1038/sj.bjc.6603494

    Article  PubMed  CAS  Google Scholar 

  32. Armstrong A, Eck SL (2003) Epcam: a new therapeutic target for an old cancer antigen. Cancer Biol Ther 2(4):320–326. doi:451[pii]

    Article  PubMed  CAS  Google Scholar 

  33. Moll J, Sleeman J, Kondo K, Hekele A, Plug R, Sherman L, Ponta H, Herrlich P, Schmidt A, Zoller M et al (1994) Analysis of molecular functions of the tumor metastasis promoting surface molecule cd44v4–v7 using transgenic mice. Princess Takamatsu Symp 24:142–151

    PubMed  CAS  Google Scholar 

  34. Schmidt DS, Klingbeil P, Schnolzer M, Zoller M (2004) Cd44 variant isoforms associate with tetraspanins and epcam. Exp Cell Res 297(2):329–347. doi:10.1016/j.yexcr.2004.02.023, S00 14482704001090 [pii]

    Google Scholar 

  35. Wurfel J, Rosel M, Seiter S, Claas C, Herlevsen M, Weth R, Zoller M (1999) Metastasis-association of the rat ortholog of the human epithelial glycoprotein antigen egp314. Oncogene 18(14):2323–2334. doi:10.1038/sj.onc.1202542

    Article  PubMed  CAS  Google Scholar 

  36. Wacholder S, Chanock S, Garcia-Closas M, El Ghormli L, Rothman N (2004) Assessing the probability that a positive report is false: an approach for molecular epidemiology studies. J Natl Cancer Inst 96(6):434–442

    Article  PubMed  Google Scholar 

  37. Momburg F, Moldenhauer G, Hammerling GJ, Moller P (1987) Immunohistochemical study of the expression of a mr 34,000 human epithelium-specific surface glycoprotein in normal and malignant tissues. Cancer Res 47(11):2883–2891

    PubMed  CAS  Google Scholar 

  38. Bergsagel PL, Victor-Kobrin C, Brents LA, Mushinski JF, Kuehl WM (1992) Genes expressed selectively in plasmacytomas: markers of differentiation and transformation. Curr Top Microbiol Immunol 182:223–228

    PubMed  CAS  Google Scholar 

  39. Gastl G, Spizzo G, Obrist P, Dunser M, Mikuz G (2000) Ep-cam overexpression in breast cancer as a predictor of survival. Lancet 356(9246):1981–1982. doi:S0140-6736(00)03312-2[pii]10.1016/S0140-6736(00)03312-2

    Article  PubMed  CAS  Google Scholar 

  40. Litvinov SV, van Driel W, van Rhijn CM, Bakker HA, van Krieken H, Fleuren GJ, Warnaar SO (1996) Expression of ep-cam in cervical squamous epithelia correlates with an increased proliferation and the disappearance of markers for terminal differentiation. Am J Pathol 148(3):865–875

    PubMed  CAS  Google Scholar 

  41. Went PT, Lugli A, Meier S, Bundi M, Mirlacher M, Sauter G, Dirnhofer S (2004) Frequent epcam protein expression in human carcinomas. Hum Pathol 35(1):122–128. doi:S0046817703005021[pii]

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by startup fund from Soochow University and grant 09KJD310006 from the University Science Foundation of Jiangsu Province (Dr. Y. Zhou), and partly supported by the National Natural Scientific Foundation of China grants 30671813 and 30872178 (Dr. J. Lu), and the Guangdong Provincial Scientific Research Grants 7003036 and 8251018201000005 (Dr. J. Lu). We thank Wangmin Zeng, Lei Yang, Ling Liu and Xiaoxuan Ling for their assistance in recruiting the subjects; and Hongjun Zhao and Sumei Feng for their laboratory assistance.

Conflict of interest

None

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jiachun Lu or Yifeng Zhou.

Additional information

L. Jiang, C. Zhang, Y. Li, and X. Yu contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jiang, L., Zhang, C., Li, Y. et al. A non-synonymous polymorphism Thr115Met in the EpCAM gene is associated with an increased risk of breast cancer in Chinese population. Breast Cancer Res Treat 126, 487–495 (2011). https://doi.org/10.1007/s10549-010-1094-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-010-1094-6

Keywords

Navigation