Skip to main content

Advertisement

Log in

Genomic screening for genes upregulated by demethylation revealed novel targets of epigenetic silencing in breast cancer

  • Preclinical study
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

Breast cancer arises through the accumulation of multiple genetic alterations and epigenetic changes such as methylation, which silences gene expression in a variety of cancers. In the present study, we applied genomic screening to identify genes upregulated by the demethylating agent 5-aza-2′-deoxycytidine (DAC) in a human breast cancer cell line (MCF7). We identified 288 genes upregulated and 29 genes downregulated more than fivefold after treatment with DAC, and gene ontology analyses revealed the genes to be involved in immune responses, apoptosis, and cell differentiation. In addition, real-time PCR analysis of ten genes silenced in MCF7 cells confirmed that they are upregulated by DAC, while bisulfite-pyrosequencing analysis confirmed that nine of those genes were silenced by methylation. We also found that treating MCF7 cells with DAC restored induction of DFNA5 by p53, as well as by two other p53 family genes, p63γ and p73β. Introduction of NTN4 into MCF7 cells suppressed cell growth, indicating that NTN4 has tumor suppressive activity. In primary breast cancers, we detected cancer-specific methylation of NTN4, PGP9.5, and DKK3, suggesting that methylation of these genes could be useful markers for diagnosis of breast cancer. Thus, DNA methylation appears to be a common event in breast cancer, and the genes silenced by methylation could be useful targets for both diagnosis and therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Bird A (1992) The essentials of DNA methylation. Cell 70:5–8

    Article  CAS  PubMed  Google Scholar 

  2. Jones PA, Baylin SB (2007) The epigenomics of cancer. Cell 128:683–692

    Article  CAS  PubMed  Google Scholar 

  3. Jemal A, Siegel R, Ward E et al (2008) Cancer statistics, 2008. CA Cancer J Clin 58:71–96

    Article  PubMed  Google Scholar 

  4. Schuebel KE, Chen W, Cope L et al (2007) Comparing the DNA hypermethylome with gene mutations in human colorectal cancer. PLoS Genet 3:1709–1723

    Article  CAS  PubMed  Google Scholar 

  5. Herman JG, Merlo A, Mao L et al (1995) Inactivation of the CDKN2/p16/MTS1 gene is frequently associated with aberrant DNA methylation in all common human cancers. Cancer Res 55:4525–4530

    CAS  PubMed  Google Scholar 

  6. Ferguson AT, Evron E, Umbricht CB et al (2000) High frequency of hypermethylation at the 14-3-3 sigma locus leads to gene silencing in breast cancer. Proc Natl Acad Sci USA 97:6049–6054

    Article  CAS  PubMed  Google Scholar 

  7. Graff JR, Herman JG, Lapidus RG et al (1995) E-cadherin expression is silenced by DNA hypermethylation in human breast and prostate carcinomas. Cancer Res 55:5195–5199

    CAS  PubMed  Google Scholar 

  8. Krop IE, Sgroi D, Porter DA et al (2001) HIN-1, a putative cytokine highly expressed in normal but not cancerous mammary epithelial cells. Proc Natl Acad Sci USA 98:9796–9801

    Article  CAS  PubMed  Google Scholar 

  9. Dammann R, Yang G, Pfeifer GP (2001) Hypermethylation of the cpG island of Ras association domain family 1A (RASSF1A), a putative tumor suppressor gene from the 3p21.3 locus, occurs in a large percentage of human breast cancers. Cancer Res 61:3105–3109

    CAS  PubMed  Google Scholar 

  10. Conway KE, McConnell BB, Bowring CE et al (2000) TMS1, a novel proapoptotic caspase recruitment domain protein, is a target of methylation-induced gene silencing in human breast cancers. Cancer Res 60:6236–6242

    CAS  PubMed  Google Scholar 

  11. Rodriguez BA, Cheng AS, Yan PS et al (2008) Epigenetic repression of the estrogen-regulated Homeobox B13 gene in breast cancer. Carcinogenesis 29:1459–1465

    Article  CAS  PubMed  Google Scholar 

  12. Douglas DB, Akiyama Y, Carraway H et al (2004) Hypermethylation of a small CpGuanine-rich region correlates with loss of activator protein-2alpha expression during progression of breast cancer. Cancer Res 64:1611–1620

    Article  CAS  PubMed  Google Scholar 

  13. Chung W, Kwabi-Addo B, Ittmann M et al (2008) Identification of novel tumor markers in prostate, colon and breast cancer by unbiased methylation profiling. PLoS One 3:e2079

    Article  PubMed  CAS  Google Scholar 

  14. Ostrow KL, Park HL, Hoque MO et al (2009) Pharmacologic unmasking of epigenetically silenced genes in breast cancer. Clin Cancer Res 15:1184–1191

    Article  CAS  PubMed  Google Scholar 

  15. Tommasi S, Karm DL, Wu X et al (2009) Methylation of homeobox genes is a frequent and early epigenetic event in breast cancer. Breast Cancer Res 11:R14

    Article  PubMed  CAS  Google Scholar 

  16. Gardiner-Garden M, Frommer M (1987) CpG islands in vertebrate genomes. J Mol Biol 196:261–282

    Article  CAS  PubMed  Google Scholar 

  17. Clark SJ, Harrison J, Paul CL et al (1994) High sensitivity mapping of methylated cytosines. Nucleic Acids Res 22:2990–2997

    Article  CAS  PubMed  Google Scholar 

  18. Watanabe Y, Toyota M, Kondo Y et al (2007) PRDM5 identified as a target of epigenetic silencing in colorectal and gastric cancer. Clin Cancer Res 13:4786–4794

    Article  CAS  PubMed  Google Scholar 

  19. Yang AS, Estecio MR, Doshi K et al (2004) A simple method for estimating global DNA methylation using bisulfite PCR of repetitive DNA elements. Nucleic Acids Res 32:e38

    Article  PubMed  CAS  Google Scholar 

  20. Sasaki Y, Morimoto I, Ishida S et al (2001) Adenovirus-mediated transfer of the p53 family genes, p73 and p51/p63 induces cell cycle arrest and apoptosis in colorectal cancer cell lines: potential application to gene therapy of colorectal cancer. Gene Ther 8:1401–1408

    Article  CAS  PubMed  Google Scholar 

  21. Sasaki Y, Negishi H, Koyama R et al (2009) p53 family members regulate the expression of the apolipoprotein D gene. J Biol Chem 284:872–883

    Article  CAS  PubMed  Google Scholar 

  22. Suzuki H, Igarashi S, Nojima M et al (2009) IGFBP7 is a p53 responsive gene specifically silenced in colorectal cancer with CpG island methylator phenotype. Carcinogenesis. doi:10.1093/carcin/bgp179

  23. Kim MS, Lebron C, Nagpal JK et al (2008) Methylation of the DFNA5 increases risk of lymph node metastasis in human breast cancer. Biochem Biophys Res Commun 370:38–43

    Article  CAS  PubMed  Google Scholar 

  24. Veeck J, Bektas N, Hartmann A et al (2008) Wnt signalling in human breast cancer: expression of the putative Wnt inhibitor Dickkopf-3 (DKK3) is frequently suppressed by promoter hypermethylation in mammary tumours. Breast Cancer Res 10:R82

    Article  PubMed  CAS  Google Scholar 

  25. Veeck J, Niederacher D, An H et al (2006) Aberrant methylation of the Wnt antagonist SFRP1 in breast cancer is associated with unfavourable prognosis. Oncogene 25:3479–3488

    Article  CAS  PubMed  Google Scholar 

  26. Akino K, Toyota M, Suzuki H et al (2007) Identification of DFNA5 as a target of epigenetic inactivation in gastric cancer. Cancer Sci 98:88–95

    Article  CAS  PubMed  Google Scholar 

  27. Mandelker DL, Yamashita K, Tokumaru Y et al (2005) PGP9.5 promoter methylation is an independent prognostic factor for esophageal squamous cell carcinoma. Cancer Res 65:4963–4968

    Article  CAS  PubMed  Google Scholar 

  28. Sato H, Suzuki H, Toyota M et al (2007) Frequent epigenetic inactivation of DICKKOPF family genes in human gastrointestinal tumors. Carcinogenesis 28:2459–2466

    Article  CAS  PubMed  Google Scholar 

  29. Suzuki H, Watkins DN, Jair KW et al (2004) Epigenetic inactivation of SFRP genes allows constitutive WNT signaling in colorectal cancer. Nat Genet 36:417–422

    Article  CAS  PubMed  Google Scholar 

  30. Wu G, Guo Z, Chang X et al (2007) LOXL1 and LOXL4 are epigenetically silenced and can inhibit ras/extracellular signal-regulated kinase signaling pathway in human bladder cancer. Cancer Res 67:4123–4129

    Article  CAS  PubMed  Google Scholar 

  31. Lejmi E, Leconte L, Pedron-Mazoyer S et al (2008) Netrin-4 inhibits angiogenesis via binding to neogenin and recruitment of Unc5B. Proc Natl Acad Sci USA 105:12491–12496

    Article  CAS  PubMed  Google Scholar 

  32. Micale L, Fusco C, Augello B et al (2008) Williams-Beuren syndrome TRIM50 encodes an E3 ubiquitin ligase. Eur J Hum Genet 16:1038–1049

    Article  CAS  PubMed  Google Scholar 

  33. Crackower MA, Kolas NK, Noguchi J et al (2003) Essential role of Fkbp6 in male fertility and homologous chromosome pairing in meiosis. Science 300:1291–1295

    Article  CAS  PubMed  Google Scholar 

  34. Marchesani M, Hakkarainen A, Tuomainen TP et al (2003) New paraoxonase 1 polymorphism I102V and the risk of prostate cancer in Finnish men. J Natl Cancer Inst 95:812–818

    Article  CAS  PubMed  Google Scholar 

  35. Lehto M, Mayranpaa MI, Pellinen T et al (2008) The R-Ras interaction partner ORP3 regulates cell adhesion. J Cell Sci 121:695–705

    Article  CAS  PubMed  Google Scholar 

  36. Masuda Y, Futamura M, Kamino H et al (2006) The potential role of DFNA5, a hearing impairment gene, in p53-mediated cellular response to DNA damage. J Hum Genet 51:652–664

    Article  CAS  PubMed  Google Scholar 

  37. Arakawa H (2004) Netrin-1 and its receptors in tumorigenesis. Nat Rev Cancer 4:978–987

    Article  CAS  PubMed  Google Scholar 

  38. Suzuki H, Toyota M, Carraway H et al (2008) Frequent epigenetic inactivation of Wnt antagonist genes in breast cancer. Br J Cancer 98:1147–1156

    Article  CAS  PubMed  Google Scholar 

  39. Tokumaru Y, Yamashita K, Kim MS et al (2008) The role of PGP9.5 as a tumor suppressor gene in human cancer. Int J Cancer 123:753–759

    Article  CAS  PubMed  Google Scholar 

  40. Yamashita K, Park HL, Kim MS et al (2006) PGP9.5 methylation in diffuse-type gastric cancer. Cancer Res 66:3921–3927

    Article  CAS  PubMed  Google Scholar 

  41. Karpf AR, Peterson PW, Rawlins JT et al (1999) Inhibition of DNA methyltransferase stimulates the expression of signal transducer and activator of transcription 1, 2, and 3 genes in colon tumor cells. Proc Natl Acad Sci USA 96:14007–14012

    Article  CAS  PubMed  Google Scholar 

  42. Issa JP, Ahuja N, Toyota M et al (2001) Accelerated age-related CpG island methylation in ulcerative colitis. Cancer Res 61:3573–3577

    CAS  PubMed  Google Scholar 

  43. Kwabi-Addo B, Chung W, Shen L et al (2007) Age-related DNA methylation changes in normal human prostate tissues. Clin Cancer Res 13:3796–3802

    Article  CAS  PubMed  Google Scholar 

  44. Shen L, Toyota M, Kondo Y et al (2007) Integrated genetic and epigenetic analysis identifies three different subclasses of colon cancer. Proc Natl Acad Sci USA 104:18654–18659

    Article  CAS  PubMed  Google Scholar 

  45. Nojima M, Suzuki H, Toyota M et al (2007) Frequent epigenetic inactivation of SFRP genes and constitutive activation of Wnt signaling in gastric cancer. Oncogene 26:4699–4713

    Article  CAS  PubMed  Google Scholar 

  46. Rattner A, Hsieh JC, Smallwood PM et al (1997) A family of secreted proteins contains homology to the cysteine-rich ligand-binding domain of frizzled receptors. Proc Natl Acad Sci USA 94:2859–2863

    Article  CAS  PubMed  Google Scholar 

  47. Bafico A, Liu G, Goldin L et al (2004) An autocrine mechanism for constitutive Wnt pathway activation in human cancer cells. Cancer Cell 6:497–506

    Article  CAS  PubMed  Google Scholar 

  48. Schlosshauer PW, Brown SA, Eisinger K et al (2000) APC truncation and increased beta-catenin levels in a human breast cancer cell line. Carcinogenesis 21:1453–1456

    Article  CAS  PubMed  Google Scholar 

  49. Van Laer L, Huizing EH, Verstreken M et al (1998) Nonsyndromic hearing impairment is associated with a mutation in DFNA5. Nat Genet 20:194–197

    Article  PubMed  Google Scholar 

  50. Thompson DA, Weigel RJ (1998) Characterization of a gene that is inversely correlated with estrogen receptor expression (ICERE-1) in breast carcinomas. Eur J Biochem 252:169–177

    Article  CAS  PubMed  Google Scholar 

  51. Lage H, Helmbach H, Grottke C et al (2001) DFNA5 (ICERE-1) contributes to acquired etoposide resistance in melanoma cells. FEBS Lett 494:54–59

    Article  CAS  PubMed  Google Scholar 

  52. Esseghir S, Kennedy A, Seedhar P et al (2007) Identification of NTN4, TRA1, and STC2 as prognostic markers in breast cancer in a screen for signal sequence encoding proteins. Clin Cancer Res 13:3164–3173

    Article  CAS  PubMed  Google Scholar 

  53. Toyota M, Suzuki H, Yamashita T et al (2009) Cancer epigenomics: implications of DNA methylation in personalized cancer therapy. Cancer Sci 100:787–791

    Article  CAS  PubMed  Google Scholar 

  54. Meng X, Lu X, Morris CA et al (1998) A novel human gene FKBP6 is deleted in Williams syndrome. Genomics 52:130–137

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. William F. Goldman for editing the manuscript. This study was supported in part by Grants-in-Aid for Scientific Research on Priority Areas from the Ministry of Education, Culture, Sports, Science, and Technology (K.I., T.T., and M.T.), Grants-in-Aid for Scientific Research (S) from Japan Society for Promotion of Science (K.I.), a Grant-in-Aid for the Third-term Comprehensive 10-year Strategy for Cancer Control, and Grant-in-Aid for Cancer Research from the Ministry of Health, Labor, and Welfare, Japan (M.T.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Minoru Toyota.

Additional information

Tomoko Fujikane, Noriko Nishikawa, Minoru Toyota, Hiromu Suzuki contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 135 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fujikane, T., Nishikawa, N., Toyota, M. et al. Genomic screening for genes upregulated by demethylation revealed novel targets of epigenetic silencing in breast cancer. Breast Cancer Res Treat 122, 699–710 (2010). https://doi.org/10.1007/s10549-009-0600-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-009-0600-1

Keywords

Navigation