Skip to main content

Advertisement

Log in

Adoptively transferred ex vivo expanded γδ-T cells mediate in vivo antitumor activity in preclinical mouse models of breast cancer

  • Preclinical study
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

In contrast to antigen-specific αβ-T cells (adaptive immune system), γδ-T cells can recognize and lyse malignantly transformed cells almost immediately upon encounter in a manner that does not require the recognition of tumor-specific antigens (innate immune system). Given the well-documented capacity of γδ-T cells to innately kill a variety of malignant cells, efforts are now actively underway to exploit the antitumor properties of γδ-T cells for clinical purposes. Here, we present for the first time preclinical in vivo mouse models of γδ-T cell-based immunotherapy directed against breast cancer. These studies were explicitly designed to approximate clinical situations in which adoptively transferred γδ-T cells would be employed therapeutically against breast cancer. Using radioisotope-labeled γδ-T cells, we first show that adoptively transferred γδ-T cells localize to breast tumors in a mouse model (4T1 mammary adenocarcinoma) of human breast cancer. Moreover, by using an antibody directed against the γδ-T cell receptor (TCR), we determined that localization of adoptively transferred γδ-T cells to tumor is a TCR-dependant process. Additionally, biodistribution studies revealed that adoptively transferred γδ-T cells traffic differently in tumor-bearing mice compared to healthy mice with fewer γδ-T cells localizing into the spleens of tumor-bearing mice. Finally, in both syngeneic (4T1) and xenogeneic (2Lmp) models of breast cancer, we demonstrate that adoptively transferred γδ-T cells are both effective against breast cancer and are otherwise well-tolerated by treated animals. These findings provide a strong preclinical rationale for using ex vivo expanded adoptively transferred γδ-T cells as a form of cell-based immunotherapy for the treatment of breast cancer. Additionally, these studies establish that clinically applicable methods for radiolabeling γδ-T cells allows for the tracking of adoptively transferred γδ-T cells in tumor-bearing hosts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Alam SM, Clark JS, Leech V, Whitford P, George WD, Campbell AM (1992) T cell receptor gamma/delta expression on lymphocyte populations of breast cancer patients. Immunol Lett 31:279–283

    Article  CAS  PubMed  Google Scholar 

  2. Aslakson CJ, Miller FR (1992) Selective events in the metastatic process defined by analysis of the sequential dissemination of subpopulations of a mouse mammary tumor. Cancer Res 52:1399–1405

    CAS  PubMed  Google Scholar 

  3. Bank I, Book M, Huszar M, Baram Y, Schnirer I, Brenner H (1993) V delta 2+ gamma delta T lymphocytes are cytotoxic to the MCF 7 breast carcinoma cell line and can be detected among the T cells that infiltrate breast tumors. Clin Immunol Immunopathol 67:17–24

    Article  CAS  PubMed  Google Scholar 

  4. Bennouna J, Bompas E, Neidhardt EM, Rolland F, Philip I, Galea C, Salot S, Saiagh S, Audrain M, Rimbert M, Lafaye-de Micheaux S, Tiollier J, Negrier S (2008) Phase-I study of Innacell gammadelta, an autologous cell-therapy product highly enriched in gamma9delta2 T lymphocytes, in combination with IL-2, in patients with metastatic renal cell carcinoma. Cancer Immunol Immunother 57:1599–1609

    Article  CAS  PubMed  Google Scholar 

  5. Buchsbaum DJ, Khazaeli MB, Axworthy DB, Schultz J, Chaudhuri TR, Zinn KR, Carpenter M, LoBuglio AF (2005) Intraperitoneal pretarget radioimmunotherapy with CC49 fusion protein. Clin Cancer Res 11:8180–8185

    Article  CAS  PubMed  Google Scholar 

  6. Cerwenka A, Bakker AB, McClanahan T, Wagner J, Wu J, Phillips JH, Lanier LL (2000) Retinoic acid early inducible genes define a ligand family for the activating NKG2D receptor in mice. Immunity 12:721–727

    Article  CAS  PubMed  Google Scholar 

  7. Chaudhuri TR, Cao Z, Ponnazhagan S, Stargel A, Simhadri PL, Zhou T, Lobuglio AF, Buchsbaum DJ, Zinn KR (2004) Bioluminescence imaging of non-palpable breast cancer xenografts during treatment with TRA-8, an anti-DR5 antibody and chemotherapy [abstract]. In: Proceedings of the 95th Annual Meeting of the American Association for Cancer Research; 2004 March 27–31; Orlando, FL. Philadelphia (PA): AACR; 2004. p 481. Abstract no 2090

  8. Coito AJ, Binder J, Brown LF, de Sousa M, Van de Water L, Kupiec-Weglinski JW (1995) Anti-TNF-alpha treatment down-regulates the expression of fibronectin and decreases cellular infiltration of cardiac allografts in rats. J Immunol 154:2949–2958

    CAS  PubMed  Google Scholar 

  9. Cowey S, Szafran AA, Kappes J, Zinn KR, Siegal GP, Desmond RA, Kim H, Evans L, Hardy RW (2007) Breast cancer metastasis to bone: evaluation of bioluminescent imaging and microSPECT/CT for detecting bone metastasis in immunodeficient mice. Clin Exp Metastasis 24:389–401

    Article  CAS  PubMed  Google Scholar 

  10. Dieli F, Gebbia N, Poccia F, Caccamo N, Montesano C, Fulfaro F, Arcara C, Valerio MR, Meraviglia S, Di Sano C, Sireci G, Salerno A (2003) Induction of gammadelta T-lymphocyte effector functions by bisphosphonate zoledronic acid in cancer patients in vivo. Blood 102:2310–2311

    Article  CAS  PubMed  Google Scholar 

  11. Dieli F, Vermijlen D, Fulfaro F, Caccamo N, Meraviglia S, Cicero G, Roberts A, Buccheri S, D’Asaro M, Gebbia N, Salerno A, Eberl M, Hayday AC (2007) Targeting human gamma}delta T cells with zoledronate and interleukin-2 for immunotherapy of hormone-refractory prostate cancer. Cancer Res 67:7450–7457

    Article  CAS  PubMed  Google Scholar 

  12. Girardi M (2006) Immunosurveillance and immunoregulation by gammadelta T cells. J Invest Dermatol 126:25–31

    Article  CAS  PubMed  Google Scholar 

  13. Girardi M, Hayday AC (2005) Immunosurveillance by gammadelta T cells: focus on the murine system. Chem Immunol Allergy 86:136–150

    Article  CAS  PubMed  Google Scholar 

  14. Groh V, Rhinehart R, Secrist H, Bauer S, Grabstein KH, Spies T (1999) Broad tumor-associated expression and recognition by tumor-derived gamma delta T cells of MICA and MICB. Proc Natl Acad Sci USA 96:6879–6884

    Article  CAS  PubMed  Google Scholar 

  15. Groh V, Steinle A, Bauer S, Spies T (1998) Recognition of stress-induced MHC molecules by intestinal epithelial gammadelta T cells. Science 279:1737–1740

    Article  CAS  PubMed  Google Scholar 

  16. Guo BL, Hollmig KA, Lopez RD (2002) Down-regulation of IL-2 receptor alpha (CD25) characterizes human gammadelta-T cells rendered resistant to apoptosis after CD2 engagement in the presence of IL-12. Cancer Immunol Immunother 50:625–637

    Article  CAS  PubMed  Google Scholar 

  17. Guo BL, Liu Z, Aldrich WA, Lopez RD (2005) Innate anti-breast cancer immunity of apoptosis-resistant human gammadelta-T cells. Breast Cancer Res Treat 93:169–175

    Article  CAS  PubMed  Google Scholar 

  18. Kabelitz D, Wesch D, He W (2007) Perspectives of gammadelta T cells in tumor immunology. Cancer Res 67:5–8

    Article  CAS  PubMed  Google Scholar 

  19. Kabelitz D, Wesch D, Pitters E, Zoller M (2004) Characterization of tumor reactivity of human V gamma 9 V delta 2 gamma delta T cells in vitro and in SCID mice in vivo. J Immunol 173:6767–6776

    CAS  PubMed  Google Scholar 

  20. Ke Y, Pearce K, Lake JP, Ziegler HK, Kapp JA (1997) Gamma delta T lymphocytes regulate the induction and maintenance of oral tolerance. J Immunol 158:3610–3618

    CAS  PubMed  Google Scholar 

  21. Kim H, Morgan DE, Buchsbaum DJ, Zeng H, Grizzle WE, Warram JM, Stockard CR, McNally LR, Long JW, Sellers JC, Forero A, Zinn KR (2008) Early therapy evaluation of combined anti-death receptor 5 antibody and gemcitabine in orthotopic pancreatic tumor xenografts by diffusion-weighted magnetic resonance imaging. Cancer Res 68:8369–8376

    Article  CAS  PubMed  Google Scholar 

  22. Kircher MF, Grimm J, Swirski FK, Libby P, Gerszten RE, Allport JR, Weissleder R (2008) Noninvasive in vivo imaging of monocyte trafficking to atherosclerotic lesions. Circulation 117:388–395

    Article  PubMed  Google Scholar 

  23. Kobayashi H, Tanaka Y, Yagi J, Osaka Y, Nakazawa H, Uchiyama T, Minato N, Toma H (2007) Safety profile and anti-tumor effects of adoptive immunotherapy using gamma-delta T cells against advanced renal cell carcinoma: a pilot study. Cancer Immunol Immunother 56:469–476

    Article  CAS  PubMed  Google Scholar 

  24. Koenecke C, Chennupati V, Schmitz S, Malissen B, Forster R, Prinz I (2009) In vivo application of mAb directed against the gammadelta TCR does not deplete but generates “invisible” gammadelta T cells. Eur J Immunol 39:372–379

    Article  CAS  PubMed  Google Scholar 

  25. Kunzmann V, Bauer E, Feurle J, Weissinger F, Tony HP, Wilhelm M (2000) Stimulation of gammadelta T cells by aminobisphosphonates and induction of antiplasma cell activity in multiple myeloma. Blood 96:384–392

    CAS  PubMed  Google Scholar 

  26. Liu Z, Eltoum IE, Guo B, Beck BH, Cloud GA, Lopez RD (2008) Protective immunosurveillance and therapeutic antitumor activity of gammadelta T cells demonstrated in a mouse model of prostate cancer. J Immunol 180:6044–6053

    CAS  PubMed  Google Scholar 

  27. Liu Z, Guo B, Lopez RD (2008) Expression of intercellular adhesion molecule (ICAM)-1 or ICAM-2 is critical in determining sensitivity of pancreatic cancer cells to cytolysis by human gammadelta-T cells: implications in the design of gammadelta-T-cell-based immunotherapies for pancreatic cancer. J Gastroenterol Hepatol 24:900–911

    Google Scholar 

  28. Liu Z, Guo BL, Gehrs BC, Nan L, Lopez RD (2005) Ex vivo expanded human Vgamma9 Vdelta 2+ gammadelta-T cells mediate innate antitumor activity against human prostate cancer cells in vitro. J Urol 173:1552–1556

    Article  CAS  PubMed  Google Scholar 

  29. Lopez RD, Xu S, Guo B, Negrin RS, Waller EK (2000) CD2-mediated IL-12-dependent signals render human gamma delta-T cells resistant to mitogen-induced apoptosis, permitting the large-scale ex vivo expansion of functionally distinct lymphocytes: implications for the development of adoptive immunotherapy strategies. Blood 96:3827–3837

    CAS  PubMed  Google Scholar 

  30. Mattarollo SR, Kenna T, Nieda M, Nicol AJ (2007) Chemotherapy and zoledronate sensitize solid tumour cells to Vgamma9Vdelta2 T cell cytotoxicity. Cancer Immunol Immunother 56:1285–1297

    Article  CAS  PubMed  Google Scholar 

  31. Meidenbauer N, Marienhagen J, Laumer M, Vogl S, Heymann J, Andreesen R, Mackensen A (2003) Survival and tumor localization of adoptively transferred Melan-A-specific T cells in melanoma patients. J Immunol 170:2161–2169

    CAS  PubMed  Google Scholar 

  32. Ponnazhagan S, Mahendra G, Curiel DT, Shaw DR (2001) Adeno-associated virus type 2-mediated transduction of human monocyte-derived dendritic cells: implications for ex vivo immunotherapy. J Virol 75:9493–9501

    Article  CAS  PubMed  Google Scholar 

  33. Ponnazhagan S, Mahendra G, Kumar S, Thompson JA, Castillas M Jr (2002) Conjugate-based targeting of recombinant adeno-associated virus type 2 vectors by using avidin-linked ligands. J Virol 76:12900–12907

    Article  CAS  PubMed  Google Scholar 

  34. Ponnazhagan S, Mukherjee P, Wang XS, Qing K, Kube DM, Mah C, Kurpad C, Yoder MC, Srour EF, Srivastava A (1997) Adeno-associated virus type 2-mediated transduction in primary human bone marrow-derived CD34+ hematopoietic progenitor cells: donor variation and correlation of transgene expression with cellular differentiation. J Virol 71:8262–8267

    CAS  PubMed  Google Scholar 

  35. Ponnazhagan S, Weigel KA, Raikwar SP, Mukherjee P, Yoder MC, Srivastava A (1998) Recombinant human parvovirus B19 vectors: erythroid cell-specific delivery and expression of transduced genes. J Virol 72:5224–5230

    CAS  PubMed  Google Scholar 

  36. Salot S, Laplace C, Saiagh S, Bercegeay S, Tenaud I, Cassidanius A, Romagne F, Dreno B, Tiollier J (2007) Large scale expansion of gamma 9 delta 2 T lymphocytes: Innacell gamma delta cell therapy product. J Immunol Methods 326:63–75

    Article  CAS  PubMed  Google Scholar 

  37. Sicard H, Al Saati T, Delsol G, Fournie JJ (2001) Synthetic phosphoantigens enhance human Vgamma9Vdelta2 T lymphocytes killing of non-Hodgkin’s B lymphoma. Mol Med 7:711–722

    CAS  PubMed  Google Scholar 

  38. Sicard H, Ingoure S, Luciani B, Serraz C, Fournie JJ, Bonneville M, Tiollier J, Romagne F (2005) In vivo immunomanipulation of V gamma 9V delta 2 T cells with a synthetic phosphoantigen in a preclinical nonhuman primate model. J Immunol 175:5471–5480

    CAS  PubMed  Google Scholar 

  39. Simoni D, Gebbia N, Invidiata FP, Eleopra M, Marchetti P, Rondanin R, Baruchello R, Provera S, Marchioro C, Tolomeo M, Marinelli L, Limongelli V, Novellino E, Kwaasi A, Dunford J, Buccheri S, Caccamo N, Dieli F (2008) Design, synthesis, and biological evaluation of novel aminobisphosphonates possessing an in vivo antitumor activity through a gammadelta-T lymphocytes-mediated activation mechanism. J Med Chem 51:6800–6807

    Article  CAS  PubMed  Google Scholar 

  40. Tao K, Fang M, Alroy J, Sahagian GG (2008) Imagable 4T1 model for the study of late stage breast cancer. BMC Cancer 8:228

    Article  PubMed  Google Scholar 

  41. Tokuyama H, Hagi T, Mattarollo SR, Morley J, Wang Q, Fai-So H, Moriyasu F, Nieda M, Nicol AJ (2008) V gamma 9 V delta 2 T cell cytotoxicity against tumor cells is enhanced by monoclonal antibody drugs—rituximab and trastuzumab. Int J Cancer 122:2526–2534

    Article  CAS  PubMed  Google Scholar 

  42. Wilhelm M, Kunzmann V, Eckstein S, Reimer P, Weissinger F, Ruediger T, Tony HP (2003) Gammadelta T cells for immune therapy of patients with lymphoid malignancies. Blood 102:200–206

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by Grants 5P50CA089019-07 from the National Cancer Institute and the UAB Small Animal Imaging shared facility (P30CA013148). The authors thank Kyle Feeley for his thoughtful review of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard D. Lopez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beck, B.H., Kim, HG., Kim, H. et al. Adoptively transferred ex vivo expanded γδ-T cells mediate in vivo antitumor activity in preclinical mouse models of breast cancer. Breast Cancer Res Treat 122, 135–144 (2010). https://doi.org/10.1007/s10549-009-0527-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-009-0527-6

Keywords

Navigation