Skip to main content

γδ T Cells in Tumor Microenvironment

  • Chapter
  • First Online:
Tumor Microenvironment

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1273))

Abstract

Gamma delta (γδ) T cells which combine both innate and adaptive potential have extraordinary properties. Indeed, their strong cytotoxic and pro-inflammatory activity allows them to kill a broad range of tumor cells. Several studies have demonstrated that γδ T cells are an important component of tumor-infiltrated lymphocytes in patients affected by different types of cancer. Tumor-infiltrating γδ T cells are also considered as a good prognostic marker in many studies, though the presence of these cells is associated with poor prognosis in breast and colon cancers. The tumor microenvironment seems to drive γδ T-cell differentiation toward a tumor-promoting or a tumor-controlling phenotype, which suggests that some tumor microenvironments can limit the effectiveness of γδ T cells.

The major γδ T-cell subsets in human are the Vγ9Vδ2 T cells that are specifically activated by phosphoantigens. This unique antigenic activation process operates in a framework that requires the expression of butyrophilin 3A (BTN3A) molecules. Interestingly, there is some evidence that BTN3A expression may be regulated by the tumor microenvironment. Given their strong antitumoral potential, Vγ9Vδ2 T cells are used in therapeutic approaches either by ex vivo culture and amplification, and then adoptive transfer to patients or by direct stimulation to propagate in vivo. These strategies have demonstrated promising initial results, but greater potency is needed. Combining Vγ9Vδ2 T-cell immunotherapy with systemic approaches to restore antitumor immune response in tumor microenvironment may improve efficacy.

In this chapter, we first review the basic features of γδ T cells and their roles in the tumor microenvironment and then analyze the advances about the understanding of these cells’ activation in tumors and why this represent unique challenges for therapeutics, and finally we discuss γδ T-cell-based therapeutic strategies and future perspectives of their development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Su C, Jakobsen I, Gu X, Nei M (1999) Diversity and evolution of T-cell receptor variable region genes in mammals and birds. Immunogenetics 50(5–6):301–308

    Article  CAS  Google Scholar 

  2. Ciofani M, Zúñiga-Pflücker JC (2010) Determining γδ versus αß T cell development. Nat Rev Immunol 10(9):657–663

    Article  CAS  Google Scholar 

  3. Bonneville M, O’Brien RL, Born WK (2010) Gammadelta T cell effector functions: a blend of innate programming and acquired plasticity. Nat Rev Immunol 10(7):467–478

    Article  CAS  Google Scholar 

  4. Catellani S et al (2007) Expansion of Vdelta1 T lymphocytes producing IL-4 in low-grade non-Hodgkin lymphomas expressing UL-16-binding proteins. Blood 109(5):2078–2085

    Article  CAS  Google Scholar 

  5. Spada FM et al (2000) Self-recognition of CD1 by gamma/delta T cells: implications for innate immunity. J Exp Med 191(6):937–948

    Article  CAS  Google Scholar 

  6. Uldrich AP et al (2013) CD1d-lipid antigen recognition by the γδ TCR. Nat Immunol 14(11):1137–1145

    Article  CAS  Google Scholar 

  7. Rhodes DA et al (2015) Activation of human γδ T cells by cytosolic interactions of BTN3A1 with soluble phosphoantigens and the cytoskeletal adaptor periplakin. J Immunol 194(5):2390–2398

    Article  CAS  Google Scholar 

  8. Scotet E et al (2005) Tumor recognition following Vgamma9Vdelta2 T cell receptor interactions with a surface F1-ATPase-related structure and apolipoprotein A-I. Immunity 22(1):71–80

    Article  CAS  Google Scholar 

  9. Wang H et al (2013) Butyrophilin 3A1 plays an essential role in prenyl pyrophosphate stimulation of human Vγ2Vδ2 T cells. J Immunol 191(3):1029–1042

    Article  CAS  Google Scholar 

  10. Dai Y, Chen H, Mo C, Cui L, He W (2012) Ectopically expressed human tumor biomarker MutS homologue 2 is a novel endogenous ligand that is recognized by human γδ T cells to induce innate anti-tumor/virus immunity. J Biol Chem 287(20):16812–16819

    Article  CAS  Google Scholar 

  11. Mangan BA et al (2013) Cutting edge: CD1d restriction and Th1/Th2/Th17 cytokine secretion by human Vδ3 T cells. J Immunol 191(1):30–34

    Article  CAS  Google Scholar 

  12. Willcox CR et al (2012) Cytomegalovirus and tumor stress surveillance by binding of a human γδ T cell antigen receptor to endothelial protein C receptor. Nat Immunol 13(9):872–879

    Article  CAS  Google Scholar 

  13. De Paoli P et al (1991) A subset of gamma delta lymphocytes is increased during HIV-1 infection. Clin Exp Immunol 83(2):187–191

    Article  Google Scholar 

  14. Autran B, Triebel F, Katlama C, Rozenbaum W, Hercend T, Debre P (1989) T cell receptor gamma/delta+ lymphocyte subsets during HIV infection. Clin Exp Immunol 75(2):206–210

    CAS  Google Scholar 

  15. Ravens S et al (2017) Human γδ T cells are quickly reconstituted after stem-cell transplantation and show adaptive clonal expansion in response to viral infection. Nat Immunol 18(4):393–401

    Article  CAS  Google Scholar 

  16. Lepore M et al (2014) A novel self-lipid antigen targets human T cells against CD1c(+) leukemias. J Exp Med 211(7):1363–1377

    Article  CAS  Google Scholar 

  17. Priatel JJ, Chung BK, Tsai K, Tan R (2014) Natural killer T cell strategies to combat Epstein–Barr virus infection. Oncoimmunology 3:e28329

    Article  Google Scholar 

  18. Groh V, Steinle A, Bauer S, Spies T (1998) Recognition of stress-induced MHC molecules by intestinal epithelial gammadelta T cells. Science 279(5357):1737–1740

    Article  CAS  Google Scholar 

  19. Maeurer M, Zitvogel L, Elder E, Storkus WJ, Lotze MT (1995) Human intestinal V delta 1+ T cells obtained from patients with colon cancer respond exclusively to SEB but not to SEA. Nat Immun 14(4):188–197

    CAS  Google Scholar 

  20. Li Y, Wang Q, Mariuzza RA (2011) Structure of the human activating natural cytotoxicity receptor NKp30 bound to its tumor cell ligand B7-H6. J Exp Med 208(4):703–714

    Article  CAS  Google Scholar 

  21. Correia DV, Fogli M, Hudspeth K, da Silva MG, Mavilio D, Silva-Santos B (2011) Differentiation of human peripheral blood Vδ1+ T cells expressing the natural cytotoxicity receptor NKp30 for recognition of lymphoid leukemia cells. Blood 118(4):992–1001

    Article  CAS  Google Scholar 

  22. von Lilienfeld-Toal M et al (2006) Activated gammadelta T cells express the natural cytotoxicity receptor natural killer p 44 and show cytotoxic activity against myeloma cells. Clin Exp Immunol 144(3):528–533

    Article  CAS  Google Scholar 

  23. Cordova A et al (2012) Characterization of human γδ T lymphocytes infiltrating primary malignant melanomas. PloS One 7(11):e49878

    Article  CAS  Google Scholar 

  24. Meraviglia S et al (2010) In vivo manipulation of Vgamma9Vdelta2 T cells with zoledronate and low-dose interleukin-2 for immunotherapy of advanced breast cancer patients. Clin Exp Immunol 161(2):290–297

    CAS  Google Scholar 

  25. Aggarwal R et al (2013) Human Vγ2Vδ2 T cells limit breast cancer growth by modulating cell survival-, apoptosis-related molecules and microenvironment in tumors. Int J Cancer 133(9):2133–2144

    Article  CAS  Google Scholar 

  26. Liu Z, Guo BL, Gehrs BC, Nan L, Lopez RD (2005) Ex vivo expanded human Vgamma9Vdelta2+ gammadelta-T cells mediate innate antitumor activity against human prostate cancer cells in vitro. J Urol 173(5):1552–1556

    Article  CAS  Google Scholar 

  27. Dieli F et al (2007) Targeting human {gamma}delta} T cells with zoledronate and interleukin-2 for immunotherapy of hormone-refractory prostate cancer. Cancer Res 67(15): 7450–7457

    Google Scholar 

  28. Tosolini M et al (2017) Assessment of tumor-infiltrating TCRVγ9Vδ2 γδ lymphocyte abundance by deconvolution of human cancers microarrays. Oncoimmunology 6(3):e1284723

    Article  Google Scholar 

  29. Kabelitz D, Wesch D (2003) Features and functions of gamma delta T lymphocytes: focus on chemokines and their receptors. Crit Rev Immunol 23(5–6):339–370

    Article  CAS  Google Scholar 

  30. Poggi A et al (2004) Migration of V delta 1 and V delta 2 T cells in response to CXCR3 and CXCR4 ligands in healthy donors and HIV-1-infected patients: competition by HIV-1 Tat. Blood 103(6):2205–2213

    Article  CAS  Google Scholar 

  31. Roth SJ et al (1998) Transendothelial chemotaxis of human αβ and γδ T lymphocytes to chemokines. Eur J Immunol 28(1):104–113

    Article  CAS  Google Scholar 

  32. Ye J et al (2013) Specific recruitment of γδ regulatory T cells in human breast cancer. Cancer Res 73(20):6137–6148

    Article  CAS  Google Scholar 

  33. Lança T et al (2013) Protective role of the inflammatory CCR2/CCL2 chemokine pathway through recruitment of type 1 cytotoxic γδ T lymphocytes to tumor beds. J Immunol 190(12):6673–6680

    Article  CAS  Google Scholar 

  34. McKenzie DR et al (2017) IL-17-producing γδ T cells switch migratory patterns between resting and activated states. Nat Commun 8:15632

    Article  CAS  Google Scholar 

  35. Meraviglia S et al (2017) Distinctive features of tumor-infiltrating γδ T lymphocytes in human colorectal cancer. Oncoimmunology 6(10):e1347742

    Article  CAS  Google Scholar 

  36. Gentles AJ et al (2015) The prognostic landscape of genes and infiltrating immune cells across human cancers. Nat Med 21(8):938–945

    Article  CAS  Google Scholar 

  37. Ma C et al (2012) Tumor-infiltrating γδ T lymphocytes predict clinical outcome in human breast cancer. J Immunol 189(10):5029–5036

    Article  CAS  Google Scholar 

  38. Wu P et al (2014) γδT17 cells promote the accumulation and expansion of myeloid-derived suppressor cells in human colorectal cancer. Immunity 40(5):785–800

    Article  CAS  Google Scholar 

  39. Patil RS, Shah SU, Shrikhande SV, Goel M, Dikshit RP, Chiplunkar SV (2016) IL17 producing γδT cells induce angiogenesis and are associated with poor survival in gallbladder cancer patients. Int J Cancer 139(4):869–881

    Article  CAS  Google Scholar 

  40. Ramstead AG, Jutila MA (2012) Complex role of γδ T-cell-derived cytokines and growth factors in cancer. J Interf Cytokine Res 32(12):563–569

    Article  CAS  Google Scholar 

  41. Ismaili J, Olislagers V, Poupot R, Fournié J-J, Goldman M (2002) Human gamma delta T cells induce dendritic cell maturation. Clin Immunol Orlando 103(3 Pt 1):296–302

    Article  CAS  Google Scholar 

  42. Dhar S, Chiplunkar SV (2010) Lysis of aminobisphosphonate-sensitized MCF-7 breast tumor cells by Vγ9Vδ2 T cells. Cancer Immun 10:10

    Google Scholar 

  43. Lafont V, Liautard J, Liautard JP, Favero J (2001) Production of TNF-alpha by human V gamma 9V delta 2 T cells via engagement of Fc gamma RIIIA, the low affinity type 3 receptor for the Fc portion of IgG, expressed upon TCR activation by nonpeptidic antigen. J Immunol 166(12):7190–7199

    Article  CAS  Google Scholar 

  44. Rossi C et al (2019) Boosting γδ T cell-mediated antibody-dependent cellular cytotoxicity by PD-1 blockade in follicular lymphoma. Oncoimmunology 8(3):1554175

    Article  Google Scholar 

  45. Brandes M, Willimann K, Moser B (2005) Professional antigen-presentation function by human gammadelta T cells. Science 309(5732):264–268

    Article  CAS  Google Scholar 

  46. Brandes M et al (2009) Cross-presenting human gammadelta T cells induce robust CD8+ alphabeta T cell responses. Proc Natl Acad Sci U S A 106(7):2307–2312

    Article  CAS  Google Scholar 

  47. Muto M, Baghdadi M, Maekawa R, Wada H, Seino K-I (2015) Myeloid molecular characteristics of human γδ T cells support their acquisition of tumor antigen-presenting capacity. Cancer Immunol Immunother CII 64(8):941–949

    Article  CAS  Google Scholar 

  48. Kühl AA et al (2009) Human peripheral gammadelta T cells possess regulatory potential. Immunology 128(4):580–588

    Article  CAS  Google Scholar 

  49. Peters C et al (2019) TGF-β enhances the cytotoxic activity of Vδ2 T cells. Oncoimmunology 8(1):e1522471

    Article  Google Scholar 

  50. Hu Q et al (2018) Discovery of a novel IL-15 based protein with improved developability and efficacy for cancer immunotherapy. Sci Rep 8(1):1–11

    Article  CAS  Google Scholar 

  51. Van Acker HH et al (2016) Interleukin-15 enhances the proliferation, stimulatory phenotype, and antitumor effector functions of human gamma delta T cells. J Hematol Oncol 9(1):101

    Article  CAS  Google Scholar 

  52. Vermijlen D, Gatti D, Kouzeli A, Rus T, Eberl M (2018) γδ T cell responses: how many ligands will it take till we know? Semin Cell Dev Biol 84:75–86

    Article  CAS  Google Scholar 

  53. Balbi B et al (1993) T-lymphocytes with gamma delta+ V delta 2+ antigen receptors are present in increased proportions in a fraction of patients with tuberculosis or with sarcoidosis. Am Rev Respir Dis 148(6 Pt 1):1685–1690

    Article  CAS  Google Scholar 

  54. Hara T et al (1992) Predominant activation and expansion of V gamma 9-bearing gamma delta T cells in vivo as well as in vitro in Salmonella infection. J Clin Invest 90(1):204–210

    Article  CAS  Google Scholar 

  55. Bertotto A et al (1993) Lymphocytes bearing the gamma delta T cell receptor in acute Brucella melitensis infection. Eur J Immunol 23(5):1177–1180

    Article  CAS  Google Scholar 

  56. Raziuddin S, Telmasani AW, el-Hag el-Awad M, al-Amari O, al-Janadi M (1992) Gamma delta T cells and the immune response in visceral leishmaniasis. Eur J Immunol 22(5):1143–1148

    Article  CAS  Google Scholar 

  57. Perera MK, Carter R, Goonewardene R, Mendis KN (1994) Transient increase in circulating gamma/delta T cells during Plasmodium vivax malarial paroxysms. J Exp Med 179(1):311–315

    Article  CAS  Google Scholar 

  58. Scalise F et al (1992) Lymphocytes bearing the gamma delta T-cell receptor in acute toxoplasmosis. Immunology 76(4):668–670

    CAS  Google Scholar 

  59. De Maria A, Ferrazin A, Ferrini S, Ciccone E, Terragna A, Moretta L (1992) Selective increase of a subset of T cell receptor gamma delta T lymphocytes in the peripheral blood of patients with human immunodeficiency virus type 1 infection. J Infect Dis 165(5):917–919

    Article  Google Scholar 

  60. De Paoli P, Gennari D, Martelli P, Cavarzerani V, Comoretto R, Santini G (1990) Gamma delta T cell receptor-bearing lymphocytes during Epstein-Barr virus infection. J Infect Dis 161(5):1013–1016

    Article  Google Scholar 

  61. McClanahan J, Fukushima PI, Stetler-Stevenson M (1999) Increased peripheral blood gamma delta T-cells in patients with lymphoid neoplasia: a diagnostic dilemma in flow cytometry. Cytometry 38(6):280–285

    Article  CAS  Google Scholar 

  62. Tanaka Y et al (1994) Nonpeptide ligands for human gamma delta T cells. Proc Natl Acad Sci U S A 91(17):8175–8179

    Article  CAS  Google Scholar 

  63. Bukowski JF, Morita CT, Band H, Brenner MB (1998) Crucial role of TCR gamma chain junctional region in prenyl pyrophosphate antigen recognition by gamma delta T cells. J Immunol 161(1):286–293

    CAS  Google Scholar 

  64. Miyagawa F et al (2001) Essential contribution of germline-encoded lysine residues in Jgamma1.2 segment to the recognition of nonpeptide antigens by human gammadelta T cells. J Immunol 167(12):6773–6779

    Article  CAS  Google Scholar 

  65. Pfeffer K, Schoel B, Gulle H, Kaufmann SH, Wagner H (1990) Primary responses of human T cells to mycobacteria: a frequent set of gamma/delta T cells are stimulated by protease-resistant ligands. Eur J Immunol 20(5):1175–1179

    Article  CAS  Google Scholar 

  66. O’Brien RL, Happ MP, Dallas A, Palmer E, Kubo R, Born WK (1989) Stimulation of a major subset of lymphocytes expressing T cell receptor gamma delta by an antigen derived from Mycobacterium tuberculosis. Cell 57(4):667–674

    Article  Google Scholar 

  67. Belmant C et al (1999) 3-Formyl-1-butyl pyrophosphate A novel mycobacterial metabolite-activating human gammadelta T cells. J Biol Chem 274(45):32079–32084

    Article  CAS  Google Scholar 

  68. Hintz M et al (2001) Identification of (E)-4-hydroxy-3-methyl-but-2-enyl pyrophosphate as a major activator for human gammadelta T cells in Escherichia coli. FEBS Lett 509(2):317–322

    Article  CAS  Google Scholar 

  69. Gober H-J, Kistowska M, Angman L, Jenö P, Mori L, De Libero G (2003) Human T cell receptor gammadelta cells recognize endogenous mevalonate metabolites in tumor cells. J Exp Med 197(2):163–168

    Article  CAS  Google Scholar 

  70. Gober H-J, Kistowska M, Angman L, Jenö P, Mori L, Libero GD (2003) Human T cell receptor γδ cells recognize endogenous mevalonate metabolites in tumor cells. J Exp Med 197(2):163–168

    Article  CAS  Google Scholar 

  71. Espinosa E et al (2001) Chemical synthesis and biological activity of bromohydrin pyrophosphate, a potent stimulator of human gamma delta T cells. J Biol Chem 276(21):18337–18344

    Article  CAS  Google Scholar 

  72. Gu S, Nawrocka W, Adams EJ (2015) Sensing of pyrophosphate metabolites by Vγ9Vδ2 T cells. Front Immunol 5:688

    Article  CAS  Google Scholar 

  73. Harly C et al (2012) Key implication of CD277/butyrophilin-3 (BTN3A) in cellular stress sensing by a major human γδ T-cell subset. Blood 120(11):2269–2279

    Article  CAS  Google Scholar 

  74. Vavassori S et al (2013) Butyrophilin 3A1 binds phosphorylated antigens and stimulates human γδ T cells. Nat Immunol 14(9):908–916

    Article  CAS  Google Scholar 

  75. Sandstrom A et al (2014) The intracellular B30.2 domain of butyrophilin 3A1 binds phosphoantigens to mediate activation of human Vγ9Vδ2 T cells. Immunity 40(4):490–500

    Article  CAS  Google Scholar 

  76. Vantourout P et al (2018) Heteromeric interactions regulate butyrophilin (BTN) and BTN-like molecules governing γδ T cell biology. Proc Natl Acad Sci U S A 115(5):1039–1044

    Article  CAS  Google Scholar 

  77. Sebestyen Z et al (2016) RhoB mediates Phosphoantigen recognition by Vγ9Vδ2 T cell receptor. Cell Rep 15(9):1973–1985

    Article  CAS  Google Scholar 

  78. Compte E, Pontarotti P, Collette Y, Lopez M, Olive D (2004) Frontline: characterization of BT3 molecules belonging to the B7 family expressed on immune cells. Eur J Immunol 34(8):2089–2099

    Article  CAS  Google Scholar 

  79. Liu D et al (2019) LSECtin on tumor-associated macrophages enhances breast cancer stemness via interaction with its receptor BTN3A3. Cell Res 29(5):365–378

    Article  CAS  Google Scholar 

  80. Cubillos-Ruiz JR et al (2010) CD277 is a negative co-stimulatory molecule universally expressed by ovarian cancer microenvironmental cells. Oncotarget 1(5):329–338

    Article  Google Scholar 

  81. Yi Y et al (2013) The functional impairment of HCC-infiltrating γδ T cells, partially mediated by regulatory T cells in a TGFβ- and IL-10-dependent manner. J Hepatol 58(5):977–983

    Article  CAS  Google Scholar 

  82. Rey J, Veuillen C, Vey N, Bouabdallah R, Olive D (2009) Natural killer and gammadelta T cells in haematological malignancies: enhancing the immune effectors. Trends Mol Med 15(6):275–284

    Article  CAS  Google Scholar 

  83. Gaafar A et al (2009) Defective gammadelta T-cell function and granzyme B gene polymorphism in a cohort of newly diagnosed breast cancer patients. Exp Hematol 37(7):838–848

    Article  CAS  Google Scholar 

  84. Bennouna J et al (2010) Phase I study of bromohydrin pyrophosphate (BrHPP, IPH 1101), a Vgamma9Vdelta2 T lymphocyte agonist in patients with solid tumors. Cancer Immunol Immunother CII 59(10):1521–1530

    Article  CAS  Google Scholar 

  85. Wiemer DF, Wiemer AJ (2014) Opportunities and challenges in development of phosphoantigens as Vγ9Vδ2 T cell agonists. Biochem Pharmacol 89(3):301–312

    Article  CAS  Google Scholar 

  86. Benyamine A et al (2016) BTN3A molecules considerably improve Vγ9Vδ2T cells-based immunotherapy in acute myeloid leukemia. Oncoimmunology 5(10):e1146843

    Article  CAS  Google Scholar 

  87. Benyamine A et al (2017) BTN3A is a prognosis marker and a promising target for Vγ9Vδ2 T cells based-immunotherapy in pancreatic ductal adenocarcinoma (PDAC). Oncoimmunology 7(1):e1372080

    Article  Google Scholar 

  88. Paul S, Shilpi, Lal G (2015) Role of gamma-delta (γδ) T cells in autoimmunity. J Leukoc Biol 97(2):259–271

    Article  CAS  Google Scholar 

  89. Lo Presti E et al (2017) Current advances in γδ T cell-based tumor immunotherapy. Front Immunol 8:1401

    Article  CAS  Google Scholar 

  90. Gomes AQ et al (2010) Identification of a panel of ten cell surface protein antigens associated with immunotargeting of leukemias and lymphomas by peripheral blood gammadelta T cells. Haematologica 95(8):1397–1404

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Olive .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Imbert, C., Olive, D. (2020). γδ T Cells in Tumor Microenvironment. In: Birbrair, A. (eds) Tumor Microenvironment. Advances in Experimental Medicine and Biology, vol 1273. Springer, Cham. https://doi.org/10.1007/978-3-030-49270-0_5

Download citation

Publish with us

Policies and ethics