Skip to main content

Advertisement

Log in

Innate Anti-breast Cancer Immunity of Apoptosis-resistant Human γδ-T cells

  • Report
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Summary

We previously identified a CD2-initiated signaling pathway which inhibits activation-induced cell death in mitogen-stimulated human γδ-T cells permitting the large-scale expansion of these cells. Here we report the innate anti-tumor activity of expanded human γδ-T cells against human breast cancer cells. Apoptosis-resistant human γδ-T cells which were expanded in vitro from cultured human peripheral blood mononuclear cells displayed lytic activity against breast cancer cell lines MDA-MB-231, MCF-7 and T-47D, but failed to kill normal human skin fibroblasts and normal human liver cells. Monoclonal antibodies (mAb) directed against the γδ-T cell receptor (TCR) or mAb directed against either the Vγ9 or the Vδ2 TCR chains were able to block γδ-T cell-mediated lysis of MDA-MB-231 cells. In addition, mAb against intercellular adhesion molecules-1 (ICAM-1/CD54) or CD18 (β subunit of ICAM-1 counter–receptor) also blocked γδ-T cell-mediated killing of MDA-MB-231 cells. Ex vivo expanded human γδ-T cells are thus able to innately recognize and kill human breast cancer cells in a γδ-TCR-dependent manner; ICAM-1 and CD18 also appear to be involved in the interactions between sensitive breast cancer cells and cytolytic γδ-T cells. As apoptosis-resistant human γδ-T cells can now readily be expanded to large numbers (clinical scale), these findings must be considered in the context of developing adoptive immunotherapy strategies to exploit γδ-T cell innate immune responses for the primary or adjuvant treatment of breast cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K Azuma S Shichijo H Shomura S Matsueda T Fujii K Itoh (2004) ArticleTitleIdentification of HER2/neu-derived peptides capable of inducing both cellular, humoral immune responses in HLA-A24 positive breast cancer patients Breast Cancer Res Treatment 86 IssueID1 19–29 Occurrence Handle10.1023/B:BREA.0000032920.95410.63

    Article  Google Scholar 

  2. F Di Modugno G Bronzi MJ Scanlan et al. (2004) ArticleTitleHuman Mena protein, a serex-defined antigen overexpressed in breast cancer eliciting both humoral and CD8+ T-cell immune response Int J Cancer 109 IssueID6 909–918 Occurrence Handle10.1002/ijc.20094 Occurrence Handle15027125

    Article  PubMed  Google Scholar 

  3. ME Gillogly NL Kallinteris M Xu JV Gulfo RE Humphreys JL Murray (2004) ArticleTitleIi-Key/HER-2/neu MHC class-II antigenic epitope vaccine peptide for breast cancer Cancer Immunol Immunother 53 IssueID6 490–496 Occurrence Handle10.1007/s00262-003-0463-y Occurrence Handle14740174

    Article  PubMed  Google Scholar 

  4. AD Gritzapis NN Sotiriadou M Papamichail CN. Baxevanis (1027) ArticleTitleGeneration of human tumor-specific CTLs in HLA-A2.1-transgenic mice using unfractionated peptides from eluates of human primary breast and ovarian tumors Cancer Immunol Immunother 53 IssueID11 1027–1040

    Google Scholar 

  5. B Guckel S Stumm C Rentzsch A Marme G Mannhardt D Wallwiener (2005) ArticleTitleA CD80-transfected human breast cancer cell variant induces HER-2/neu-specific T cells in HLA-A*02-matched situations in vitro as well as in vivo Cancer Immunol Immunother 54 IssueID2 129–140 Occurrence Handle10.1007/s00262-004-0583-z Occurrence Handle15365776

    Article  PubMed  Google Scholar 

  6. JJ Hernando TW Park WC Kuhn (2003) ArticleTitleDendritic cell-based vaccines in breast and gynaecologic cancer Anticancer Res 23 IssueID5b 4293–4303 Occurrence Handle14666641

    PubMed  Google Scholar 

  7. A Jaramillo K Narayanan LG Campbell et al. (2004) ArticleTitleRecognition of HLA-A2-restricted mammaglobin-A-derived epitopes by CD8+ cytotoxic T lymphocytes from breast cancer patients Breast Cancer Res Tr 88 IssueID1 29–41 Occurrence Handle10.1007/s10549-004-8918-1

    Article  Google Scholar 

  8. S Koido M Ohana C Liu et al. (2004) ArticleTitleDendritic cells fused with human cancer cells: morphology, antigen expression, and T cell stimulation Clin Immunol 113 IssueID3 261–269 Occurrence Handle10.1016/j.clim.2004.08.004 Occurrence Handle15507391

    Article  PubMed  Google Scholar 

  9. Neidhardt-Berard EM, Berard F, Banchereau J, Palucka AK. Dendritic cells loaded with killed breast cancer cells induce differentiation of tumor-specific cytotoxic T lymphocytes. Breast Cancer Res 6(4): 2004.

  10. S Oh M Terabe CD Pendleton et al. (2004) ArticleTitleHuman CTLs to wild-type and enhanced epitopes of a novel prostate and breast tumor-associated protein, TARP, lyse human breast cancer cells Cancer Rese 64 IssueID7 2610–2618 Occurrence Handle10.1158/0008-5472.CAN-03-2183

    Article  Google Scholar 

  11. PA Sotiropoulou SA Perez V Voelter et al. (2003) ArticleTitleNatural CD8+ T-cell responses against MHC class I epitopes of the HER-2/ neu oncoprotein in patients with epithelial tumors Cancer Immunol Immunother 52 IssueID12 771–779 Occurrence Handle10.1007/s00262-003-0420-9 Occurrence Handle13680193

    Article  PubMed  Google Scholar 

  12. K Narayanan A Jaramillo ND Benshoff et al. (2004) ArticleTitleResponse of established human breast tumors to vaccination with mammaglobin-A cDNA J Natl Cancer Instit 96 IssueID18 1388–1396

    Google Scholar 

  13. RA Graham JM Burchell J. Taylor-Papadimitriou (1996) ArticleTitleThe polymorphic epithelial mucin: potential as an immunogen for a cancer vaccine Cancer Immunol Immunother 42 IssueID2 71–80 Occurrence Handle10.1007/s002620050254 Occurrence Handle8620523

    Article  PubMed  Google Scholar 

  14. C Musselli G Ragupathi T Gilewski KS Panageas Y Spinat PO Livingston (2002) ArticleTitleReevaluation of the cellular immune response in breast cancer patients vaccinated with MUC1 Int J Cancer 97 IssueID5 660–667 Occurrence Handle10.1002/ijc.10081 Occurrence Handle11807794

    Article  PubMed  Google Scholar 

  15. V Apostolopoulos V Karanikas JS Haurum IF. McKenzie (1997) ArticleTitleInduction of HLA-A2-restricted CTLs to the mucin 1 human breast cancer antigen J Immunol 159 IssueID11 5211–5218 Occurrence Handle9548459

    PubMed  Google Scholar 

  16. A Segal-Eiras MV. Croce (1997) ArticleTitleBreast cancer associated mucin: a review Allergol Immunopathol (Madr) 25 176–181

    Google Scholar 

  17. GL Palmisano MP Pistillo P Capanni et al. (2001) ArticleTitleInvestigation of HLA class I downregulation in breast cancer by RT-PCR Human Immunol 62 IssueID2 133–139 Occurrence Handle10.1016/S0198-8859(00)00241-X

    Article  Google Scholar 

  18. K Pantel G Schlimok D Kutter et al. (1991) ArticleTitleFrequent down-regulation of major histocompatibility class I antigen expression on individual micrometastatic carcinoma cells Cancer Res 51 IssueID17 4712–5 Occurrence Handle1873815

    PubMed  Google Scholar 

  19. A Zia FW Schildberg I Funke (2001) ArticleTitleMHC class I negative phenotype of disseminated tumor cells in bone marrow is associated with poor survival in R0M0 breast cancer patients Int J Cancer 93 IssueID4 566–70 Occurrence Handle10.1002/ijc.1362

    Article  Google Scholar 

  20. V Groh R Rhinehart H Secrist S Bauer KH Grabstein T Spies (1999) ArticleTitleBroad tumor-associated expression and recognition by tumor-derived gamma delta T cells of MICA and MICB Proc Natl Acad Sci U S A 96 IssueID12 6879–6884 Occurrence Handle10.1073/pnas.96.12.6879 Occurrence Handle10359807

    Article  PubMed  Google Scholar 

  21. S Bauer V Groh J Wu et al. (1999) ArticleTitleActivation of NK cells and T cells by NKG2D, a receptor for stress-inducible MICA [see comments] Science 285 IssueID5428 727–729 Occurrence Handle10.1126/science.285.5428.727 Occurrence Handle10426993

    Article  PubMed  Google Scholar 

  22. V Groh A Steinle S Bauer T Spies (1998) ArticleTitleRecognition of stress-induced MHC molecules by intestinal epithelial gammadelta T cells Science 279 IssueID5357 1737–1740 Occurrence Handle10.1126/science.279.5357.1737 Occurrence Handle9497295

    Article  PubMed  Google Scholar 

  23. F Triebel T Hercend (1989) ArticleTitleSubpopulations of human peripheral T gamma delta lymphocytes.[see comment] Immunol Today 10 IssueID6 186–188 Occurrence Handle10.1016/0167-5699(89)90321-6 Occurrence Handle2526644

    Article  PubMed  Google Scholar 

  24. V Kunzmann E Bauer J Feurle F Weissinger HP Tony M Wilhelm (2000) ArticleTitleStimulation of gammadelta T cells by aminobisphosphonates and induction of antiplasma cell activity in multiple myeloma [see comment] Blood 96 IssueID2 384–392 Occurrence Handle10887096

    PubMed  Google Scholar 

  25. M Wilhelm V Kunzmann S Eckstein et al. (2003) ArticleTitleGammadelta T cells for immune therapy of patients with lymphoid malignancies Blood 102 IssueID1 200–206 Occurrence Handle10.1182/blood-2002-12-3665 Occurrence Handle12623838

    Article  PubMed  Google Scholar 

  26. F Ottones J Liautard A Gross F Rabenoelina JP Liautard J Favero (2000) ArticleTitleActivation of human Vgamma9Vdelta2 T cells by a Brucella suis non-peptidic fraction impairs bacterial intracellular multiplication in monocytic infected cells Immunology 100 IssueID2 252–258 Occurrence Handle10.1046/j.1365-2567.2000.00024.x Occurrence Handle10886403

    Article  PubMed  Google Scholar 

  27. AC Hayday (2000) ArticleTitle[gamma][delta] cells: a right time and a right place for a conserved third way of protection Ann Rev Immunol 18 975–1026 Occurrence Handle10.1146/annurev.immunol.18.1.975

    Article  Google Scholar 

  28. RD Lopez S Xu B Guo RS Negrin EK Waller (2000) ArticleTitleCD2-mediated IL-12-dependent signals render human gamma-delta T cells resistant to mitogen-induced apoptosis, permitting the large-scale ex vivo expansion of functionally distinct lymphocytes: implications for the development of adoptive immunotherapy strategies Blood 96 IssueID12 3827–3837 Occurrence Handle11090067

    PubMed  Google Scholar 

  29. S Schondelmaier D Wesch K Pechhold D Kabelitz (1993) ArticleTitleV gamma gene usage in peripheral blood gamma delta T cells Immunol Lett 38 121–126 Occurrence Handle10.1016/0165-2478(93)90176-3 Occurrence Handle8294139

    Article  PubMed  Google Scholar 

  30. K Itoh AB Tilden CM Balch (1986) ArticleTitleInterleukin 2 activation of cytotoxic T-lymphocytes infiltrating into human metastatic melanomas Cancer Res 46 IssueID6 3011–3017 Occurrence Handle3486040

    PubMed  Google Scholar 

  31. RJ Medler TL Whiteside NL Vuyanovic JC Hiserodt RB. Herberman (1988) ArticleTitleHuman adherent lymphokine-activated killer cells: a new approach to generating antitumor effectors for adoptive immunotherapy Cancer Res 48 3461 Occurrence Handle3259468

    PubMed  Google Scholar 

  32. JJ Mule S Shu SL Schwarz SA Rosenberg (1984) ArticleTitleAdoptive immunotherapy of established pulmonary metastases with LAK cells and recombinant IL-2 Science 225 1487–1489 Occurrence Handle6332379

    PubMed  Google Scholar 

  33. LM Muul EP Director C Hyatt SA Rosenberg (1986) ArticleTitleLarge scale production of human lymphokine activated killer cells for use in adoptive immunotherapy J Immunol Methods 88 265–275 Occurrence Handle10.1016/0022-1759(86)90015-3 Occurrence Handle3485692

    Article  PubMed  Google Scholar 

  34. SA Rosenberg (1985) ArticleTitleLymphokine-activated killer cells: a new approach to immunotherapy of cancer J Natl Cancer Inst 75 595 Occurrence Handle3876465

    PubMed  Google Scholar 

  35. SA Rosenberg MT Lotze JJ Mule (1988) ArticleTitleNew approaches to the immunotherapy of cancer using interleukin-2 Ann Intern Med 108 853 Occurrence Handle3285747

    PubMed  Google Scholar 

  36. PM Schiltz LD Beutel SK Nayak RO Dillman (1997) ArticleTitleCharacterization of tumor-infiltrating lymphocytes derived from human tumors for use as adoptive immunotherapy of cancer J Immunother 20 IssueID5 377–386 Occurrence Handle9336745

    PubMed  Google Scholar 

  37. SL Topalian LM Muul D Solomon SA Rosenberg (1987) ArticleTitleExpansion of human tumor infiltrating lymphocytes for use in immunotherapy trials J Immunol Methods 102 IssueID1 127–141 Occurrence Handle3305708

    PubMed  Google Scholar 

  38. WH West KW Tauer JR Yannelli et al. (1987) ArticleTitleConstant-infusion recombinant interleukin-2 in adoptive immunotherapy of advanced cancer New Engl J Med 316 898 Occurrence Handle3493433

    PubMed  Google Scholar 

  39. EWP Nijhuis EW Kemenade CG Figdor RAW Lier Particlevan (1990) ArticleTitleActivation and expansion of tumor-infiltrating lymphocytes by anti-CD3 and anti-CD28 monoclonal antibodies Cancer Immunol Immunother 32 245–250 Occurrence Handle10.1007/BF01741708 Occurrence Handle2175673

    Article  PubMed  Google Scholar 

  40. IGH Schmidt-Wolf RS Negrin H Kiem KG Blume IL. Weissman (1991) ArticleTitleUse of a SCID mouse/human lymphoma model to evaluate cytokine-induced killer cells with potent antitumor cell activity J Exp Med 174 139–149 Occurrence Handle10.1084/jem.174.1.139 Occurrence Handle1711560

    Article  PubMed  Google Scholar 

  41. SL Topalian D Solomon SA Rosenberg (1989) ArticleTitleTumor-specific cytolysis by lymphocytes infiltrating human melanomas J Immunol 142 IssueID10 3714–3725 Occurrence Handle2785562

    PubMed  Google Scholar 

  42. H Takahashi T Nakada I Puisieux (1993) ArticleTitleInhibition of human colon cancer growth by antibody-directed human LAK cells in SCID mice Science 259 1469

    Google Scholar 

  43. JR Yannelli C Hyatt S McConnell et al. (1996) ArticleTitleGrowth of tumor-infiltrating lymphocytes from human solid cancers: summary of a 5-year experience Int J Cancer 65 IssueID4 413–421 Occurrence Handle10.1002/(SICI)1097-0215(19960208)65:4<413::AID-IJC3>3.0.CO;2-# Occurrence Handle8621219

    Article  PubMed  Google Scholar 

  44. MB Bloom D Perry-Lalley PF Robbins et al. (1997) ArticleTitleIdentification of tyrosinase-related protein 2 as a tumor rejection antigen for the B16 melanoma J Exp Med 185 IssueID3 453–459 Occurrence Handle10.1084/jem.185.3.453 Occurrence Handle9053445

    Article  PubMed  Google Scholar 

  45. TA Colella TN Bullock LB Russell et al. (2000) ArticleTitleSelf-tolerance to the murine homologue of a tyrosinase-derived melanoma antigen: implications for tumor immunotherapy J Exp Medicine 191 IssueID7 1221–1232 Occurrence Handle10.1084/jem.191.7.1221

    Article  Google Scholar 

  46. ME Dudley MI Nishimura AK Holt SA Rosenberg (1999) ArticleTitleAnti-tumor immunization with a minimal peptide epitope (G9–209–2M) leads to a functionally heterogeneous CTL response J Immunother 22 IssueID4 288–298 Occurrence Handle10404430

    PubMed  Google Scholar 

  47. PR Dunbar JL Chen D Chao et al. (1999) ArticleTitleCutting edge: rapid cloning of tumor-specific CTL suitable for adoptive immunotherapy of melanoma J Immunol 162 IssueID12 6959–6962 Occurrence Handle10358133

    PubMed  Google Scholar 

  48. K Fleischhauer S Tanzarella V Russo et al. (1997) ArticleTitleFunctional heterogeneity of HLA-A*02 subtypes revealed by presentation of a MAGE-3-encoded peptide to cytotoxic T cell clones J Immunol 159 IssueID5 2513–2521 Occurrence Handle9278345

    PubMed  Google Scholar 

  49. Y Kawakami PF Robbins X Wang et al. (1998) ArticleTitleIdentification of new melanoma epitopes on melanosomal proteins recognized by tumor infiltrating T lymphocytes restricted by HLA-A1, -A2, and -A3 alleles J Immunol 161 IssueID12 6985–6992 Occurrence Handle9862734

    PubMed  Google Scholar 

  50. CJ Kim DR Parkinson F Marincola (1998) ArticleTitleImmunodominance across HLA polymorphism: implications for cancer immunotherapy J Immunother 21 IssueID1 1–16 Occurrence Handle9456431

    PubMed  Google Scholar 

  51. L Mateo J Gardner Q Chen et al. (1999) ArticleTitleAn HLA-A2 polyepitope vaccine for melanoma immunotherapy J Immunol 163 IssueID7 4058–4063 Occurrence Handle10491010

    PubMed  Google Scholar 

  52. MD McKee TM Clay SA Rosenberg MI Nishimura (1999) ArticleTitleQuantitation of T-cell receptor frequencies by competitive PCR: generation and evaluation of novel TCR subfamily and clone specific competitors J Immunother 22 IssueID2 93–102 Occurrence Handle10093034

    PubMed  Google Scholar 

  53. B Guo K Hollmig RD Lopez (2002) ArticleTitleDown-regulation of IL-2 receptor a (CD25) characterizes human γδ-T cells rendered resistant to apoptosis after CD2 engagement in the presence of IL-12 Cancer Immunol Immunother 50 625–637 Occurrence Handle10.1007/s00262-001-0244-4 Occurrence Handle11807626

    Article  PubMed  Google Scholar 

  54. JH Russell (1995) ArticleTitleActivation-induced death of mature T cells in the regulation of immune responses Curr Opin Immunol 7 IssueID3 382–388 Occurrence Handle10.1016/0952-7915(95)80114-6 Occurrence Handle7546404

    Article  PubMed  Google Scholar 

  55. D Kabelitz K Pechhold A Bender et al. (1991) ArticleTitleActivation and activation-driven death of human gamma/delta T cells Immunol Rev 120 71–88 Occurrence Handle1677929

    PubMed  Google Scholar 

  56. M Ferrarini S Heltai E Toninelli MG Sabbadini C Pellicciari AA Manfredi (1995) ArticleTitleDaudi lymphoma killing triggers the programmed death of cytotoxic V gamma 9/V delta 2 T lymphocytes J Immunol 154 IssueID8 3704–3712 Occurrence Handle7706713

    PubMed  Google Scholar 

  57. K Hollmig B Guo RD Lopez (2001) ArticleTitleIn vitro anti-melanoma activity of apoptosis-resistant human γδ-T cells J Clin Oncol 20 254

    Google Scholar 

  58. K Guo B Hollmig RD Lopez (2001) ArticleTitleIn vitro activity of apoptosis-resistant human γδ-T cells against solid malignances J Clin Oncol 20 267

    Google Scholar 

  59. J Wu V Groh T Spies (2002) ArticleTitleT cell antigen receptor engagement and specificity in the recognition of stress-inducible MHC class I-related chains by human epithelial gamma delta T cells J Immunol 169 IssueID3 1236–1240 Occurrence Handle12133944

    PubMed  Google Scholar 

  60. A Steinle V Groh T Spies (1998) ArticleTitleDiversification, expression, and gamma delta T cell recognition of evolutionarily distant members of the MIC family of major histocompatibility complex class I-related molecules Proc Natl Acad Sci USA 95 IssueID21 12510–12515 Occurrence Handle10.1073/pnas.95.21.12510 Occurrence Handle9770516

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard D. Lopez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guo, B.L., Liu, Z., Aldrich, W.A. et al. Innate Anti-breast Cancer Immunity of Apoptosis-resistant Human γδ-T cells. Breast Cancer Res Treat 93, 169–175 (2005). https://doi.org/10.1007/s10549-005-4792-8

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-005-4792-8

Keywords

Navigation