Skip to main content
Log in

Cobalamin C defect: natural history, pathophysiology, and treatment

  • Homocysteine and B-Vitamin Metabolism
  • Published:
Journal of Inherited Metabolic Disease

Abstract

Cobalamin C (Cbl-C) defect is the most common inborn cobalamin metabolism error; it causes impaired conversion of dietary vitamin B12 into its two metabolically active forms, methylcobalamin and adenosylcobalamin. Cbl-C defect causes the accumulation of methylmalonic acid and homocysteine and decreased methionine synthesis. The gene responsible for the Cbl-C defect has been recently identified, and more than 40 mutations have been reported. MMACHC gene is located on chromosome 1p and catalyzes the reductive decyanation of CNCbl. Cbl-C patients present with a heterogeneous clinical picture and, based on their age at onset, can be categorized into two distinct clinical forms. Early-onset patients, presenting symptoms within the first year, show a multisystem disease with severe neurological, ocular, haematological, renal, gastrointestinal, cardiac, and pulmonary manifestations. Late-onset patients present a milder clinical phenotype with acute or slowly progressive neurological symptoms and behavioral disturbances. To improve clinical course and metabolic abnormalities, treatment of Cbl-C defect usually consists of a combined approach that utilizes vitamin B12 to increase intracellular cobalamin and to maximize deficient enzyme activities, betaine to provide a substrate for the conversion of homocysteine into methionine through betaine-homocysteine methyltransferase, and folic acid to enhance remethylation pathway. No proven efficacy has been demonstrated for carnitine and dietary protein restriction. Despite these measures, the long-term follow-up is unsatisfactory especially in patients with early onset, with frequent progression of neurological and ocular impairment. The unfavorable outcome suggests that better understanding of the pathophysiology of the disease is needed to improve treatment protocols and to develop new therapeutic approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

AdoCbl:

Adenosylcobalamin

BHMT:

Betaine-homocysteine methyltransferase

Cbl:

Cobalamin

CBS:

Cystathionine beta synthase

HUS:

Hemolytic uremic syndrome

MeCbl:

Methylcobalamin

MMA:

Methylmalonic acid

MTHFR:

Methyl tetrahydrofolate reductase

OH-Cbl:

Hydroxycobalamin

SAM:

S-adenosylmethionine

SAH:

S-adenosylhomocysteine

References

  • Andersson HC, Shapira E (1998) Biochemical and clinical response to hydroxycobalamin versus cyanocobalamin treatment in patients with methylmalonic academia and homocystinuria (Cbl-C). J Pediatr 132:121–124

    Article  CAS  PubMed  Google Scholar 

  • Andersson HC, Marble M, Shapira E (1999) Long-term outcome in treated combined methylmalonic acidemia and homocystinemia. Genet Med 1(4):146–150

    Article  CAS  PubMed  Google Scholar 

  • Andrès E, Affenberger S, Federici L, Korganow AS (2006) Pseudo-thrombotic microangiopathy related to cobalamin deficiency. Am J Med 119(12):e3

    Article  PubMed  Google Scholar 

  • Bartholomew DW, Batshaw ML, Allen RH et al (1988) Therapeutic approaches to cobalamin-C methylmalonic acidemia and homocystinuria. J Pediatr 112(1):32–39

    Article  CAS  PubMed  Google Scholar 

  • Baumgartner ER, Wick H, Maurer R, Egli N, Steinmann B (1979) Congenital defect in intracellular cobalamin metabolism resulting in homocysteinuria and methylmalonic aciduria. I. Case report and histopathology. Helv Paediatr Acta 34(5):465–482

    CAS  PubMed  Google Scholar 

  • Biancheri R, Cerone R, Rossi A et al (2002) Early-onset cobalamin C/D deficiency: epilepsy and electroencephalographic features. Epilepsia 43(6):616–622

    Article  PubMed  Google Scholar 

  • Bodamer OA, Rosenblatt DS, Appel SH, Beaudet AL (2001) Adult-onset combined methylmalonic aciduria and homocystinuria (Cbl-C). Neurology 56(8):1113

    CAS  PubMed  Google Scholar 

  • Bodamer OA, Sahoo T, Beaudet AL et al (2005) Creatine metabolism in combined methylmalonic aciduria and homocystinuria. Ann Neurol 57(4):557–560

    Article  CAS  PubMed  Google Scholar 

  • Brandstetter Y, Weinhouse E, Splaingard ML, Tang TT (1990) Cor pulmonale as a complication of methylmalonic acidemia and homocystinuria (Cbl-C type). Am J Med Genet 36(2):167–171

    Article  CAS  PubMed  Google Scholar 

  • Brunelli SM, Meyers KE, Guttenberg M, Kaplan P, Kaplan BS (2002) Cobalamin C deficiency complicated by an atypical glomerulopathy. Pediatr Nephrol 17(10):800–803

    Article  PubMed  Google Scholar 

  • Butler CC, Vidal-Alaball J, Cannings-John R et al (2006) Oral vitamin B12 versus intramuscular vitamin B12 for vitamin B12 deficiency: a systematic review of randomized controlled trials. Fam Pract 23(3):279–285

    Article  PubMed  Google Scholar 

  • Carrillo-Carrasco N, Sloan J, Valle D, Hamosh A, Venditti CP (2009) Hydroxocobalamin dose escalation improves metabolic control in Cbl-C. J Inherit Metab Dis 32(6):728–731

    Article  CAS  PubMed  Google Scholar 

  • Cerone R, Schiaffino MC, Caruso U, Lupino S, Gatti R (1999) Minor facial anomalies in combined methylmalonic aciduria and homocystinuria due to a defect in cobalamin metabolism. J Inherit Metab Dis 22(3):247–250

    Article  CAS  PubMed  Google Scholar 

  • De Bie I, Nizard SD, Mitchell GA (2009) Fetal dilated cardiomyopathy: an unsuspected presentation of methylmalonic aciduria and hyperhomocystinuria, Cbl-C type. Prenat Diagn 29(3):266–270

    Article  PubMed  Google Scholar 

  • Deodato F, Boenzi S, Santorelli FM, Dionisi-Vici C (2006) Methylmalonic and propionic aciduria. Am J Med Genet C Semin Med Genet 142C(2):104–112

    Article  CAS  PubMed  Google Scholar 

  • Detich N, Hamm S, Just G, Knox JD, Szyf M (2003) The methyl donor S-adenosylmethionine inhibits active demethylation of DNA: a candidate novel mechanism for the pharmacological effects of S-adenosylmethionine. J Biol Chem 278(23):20812–20820

    Article  CAS  PubMed  Google Scholar 

  • Di Rocco A, Bottiglieri T, Werner P et al (2002) Abnormal cobalamin-dependent transmethylation in AIDS-associated myelopathy. Neurology 58(5):730–735

    PubMed  Google Scholar 

  • Ellaway C, Christodoulou J, Kamath R, Carpenter K, Wilcken B (1998) The association of protein-losing enteropathy with cobalamin C defect. J Inherit Metab Dis 21(1):17–22

    Article  CAS  PubMed  Google Scholar 

  • Fowler B, Leonard JV, Baumgartner MR (2008) Causes of and diagnostic approach to methylmalonic acidurias. J Inherit Metab Dis 31(3):350–360

    Article  CAS  PubMed  Google Scholar 

  • Geraghty MT, Perlman EJ, Martin LS et al (1992) Cobalamin C defect associated with hemolytic-uremic syndrome. J Pediatr 120(6):934–937

    Article  CAS  PubMed  Google Scholar 

  • Gerth C, Morel CF, Feigenbaum A, Levin AV (2008) Ocular phenotype in patients with methylmalonic aciduria and homocystinuria, cobalamin C type. J AAPOS 12(6):591–596

    Article  PubMed  Google Scholar 

  • Gold R, Bogdahn U, Kappos L et al (1996) Hereditary defect of cobalamin metabolism (homocystinuria and methylmalonic aciduria) of juvenile onset. J Neurol Neurosurg Psychiatr 60(1):107–108

    Article  CAS  PubMed  Google Scholar 

  • Greitz D (2004) The hydrodynamic hypothesis versus the bulk flow hypothesis. Neurosurg Rev 27(4):299–300

    Article  PubMed  Google Scholar 

  • Hannibal L, Kim J, Brasch NE et al (2009) Processing of alkylcobalamins in mammalian cells: a role for the MMACHC (cbl-C) gene product. Mol Genet Metab 97(4):260–266

    Article  CAS  PubMed  Google Scholar 

  • Heil SG, Hogeveen M, Kluijtmans LAJ, van Dijken PJ, van de Berg GB, Blom HJ, Morava E (2007) Marfanoid features in a child with combined methylmalonic aciduria and homocystinuria (CblC type). J Inherit Metab Dis 30:811

    Google Scholar 

  • Heinemann MK, Tomaske M, Trefz FK, Bosk A, Baden W, Ziemer G (2001) Ventricular septal defect closure in a neonate with combined methylmalonic aciduria/homocystinuria. Ann Thorac Surg 72(4):1391–1392

    Article  CAS  PubMed  Google Scholar 

  • Huemer M, Simma B, Fowler B, Suormala T, Bodamer OA, Sass JO (2005) Prenatal and postnatal treatment in cobalamin C defect. J Pediatr 147(4):469–472

    Article  CAS  PubMed  Google Scholar 

  • Kim J, Gherasim C, Banerjee R (2008) Decyanation of vitamin B12 by a trafficking chaperone. Proc Natl Acad Sci USA 105(38):14551–14554

    Article  CAS  PubMed  Google Scholar 

  • Kim J, Hannibal L, Gherasim C, Jacobsen DW, Banerjee R (2009) A human vitamin B12 trafficking protein uses glutathione transferase activity for processing alkylcobalamins. J Biol Chem 284(48):33418–33424

    Article  CAS  PubMed  Google Scholar 

  • Kölker S, Sauer SW, Hoffmann GF, Müller I, Morath MA, Okun JG (2008) Pathogenesis of CNS involvement in disorders of amino and organic acid metabolism. J Inherit Metab Dis 31:194–204

    Article  Google Scholar 

  • Kruman II, Culmsee C, Chan SL et al (2000) Homocysteine elicits a DNA damage response in neurons that promotes apoptosis and hypersensitivity to excitotoxicity. J Neurosci 20(18):6920–6926

    CAS  PubMed  Google Scholar 

  • Kruman II, Kumaravel TS, Lohani A et al (2002) Folic acid deficiency and homocysteine impair DNA repair in hippocampal neurons and sensitize them to amyloid toxicity in experimental models of Alzheimer’s disease. J Neurosci 22(5):1752–1762

    CAS  PubMed  Google Scholar 

  • Lerner-Ellis JP, Tirone JC, Pawelek PD et al (2006) Identification of the gene responsible for methylmalonic aciduria and homocystinuria, Cbl-C type. Nat Genet 38(1):93–100

    Article  CAS  PubMed  Google Scholar 

  • Licastro F, Marocchi A, Penco S et al (2006) Does Down’s syndrome support the homocysteine theory of atherogenesis? Experience in elderly subjects with trisomy 21. Arch Gerontol Geriatr 43(3):381–387

    Article  CAS  PubMed  Google Scholar 

  • Lin HJ, Neidich JA, Salazar D et al (2009) Asymptomatic maternal combined homocystinuria and methylmalonic aciduria (Cbl-C) detected through low carnitine levels on newborn screening. J Pediatr 155(6):924–927

    Article  CAS  PubMed  Google Scholar 

  • Longo D, Fariello G, Dionisi-Vici C et al (2005) MRI and 1H-MRS findings in early-onset cobalamin C/D defect. Neuropediatrics 36(6):366–372

    Article  CAS  PubMed  Google Scholar 

  • Maamar M, Mezalek ZT, Harmouche H, Adnaoui M, Aouni M, Maaouni A (2008) Contribution of spinal MRI for unsuspected cobalamin deficiency in isolated sub-acute combined degeneration. Eur J Intern Med 19(2):143–145

    Article  CAS  PubMed  Google Scholar 

  • Martì-Carvajal AJ, Solà I, Lathyris D, Salanti G (2009) Homocysteine lowering interventions for preventing cardiovascular events. Cochrane Database Syst Rev. 7(4):CD006612

    Google Scholar 

  • Mattson MP, Shea TB (2003) Folate and homocysteine metabolism in neural plasticity and neurodegenerative disorders. Trends Neurosci 26(3):137–146

    Article  CAS  PubMed  Google Scholar 

  • McCaddon A, Kelly CL (1992) Alzheimer’s disease: a ‘cobalaminergic’ hypothesis. Med Hypotheses 37(3):161–165

    Article  CAS  PubMed  Google Scholar 

  • McCully KS (1992) Homocystinuria, arteriosclerosis, methylmalonic aciduria, and methyltransferase deficiency: a key case revisited. Nutr Rev 50(1):7–12

    Article  CAS  PubMed  Google Scholar 

  • Mitchell GA, Watkins D, Melançon SB et al (1986) Clinical heterogeneity in cobalamin C variant of combined homocystinuria and methylmalonic aciduria. J Pediatr 108(3):410–415

    Article  CAS  PubMed  Google Scholar 

  • Morel CF, Lerner-Ellis JP, Rosenblatt DS (2006) Combined methylmalonic aciduria and homocystinuria (Cbl-C): phenotype-genotype correlations and ethnic-specific observations. Mol Genet Metab 88(4):315–321

    Article  CAS  PubMed  Google Scholar 

  • Mudd SH, Skovby F, Levy HL et al (1985) The natural history of homocystinuria due to cystathionine beta-synthase deficiency. Am J Hum Genet 37(1):1–31

    CAS  PubMed  Google Scholar 

  • Nogueira C, Aiello C, Cerone R et al (2008) Spectrum of MMACHC mutations in Italian and Portuguese patients with combined methylmalonic aciduria and homocystinuria, Cbl-C type. Mol Genet Metab 93(4):475–480

    Article  CAS  PubMed  Google Scholar 

  • Nowak-Göttl U, Duering C, Kempf-Bielack B, Sträter R (2003) Thromboembolic diseases in neonates and children. Pathophysiol Haemost Thromb 33(5–6):269–274

    Article  PubMed  Google Scholar 

  • Obeid R, Herrmann W (2006) Mechanisms of homocysteine neurotoxicity in neurodegenerative diseases with special reference to dementia. FEBS Lett 580(13):2994–3005

    Article  CAS  PubMed  Google Scholar 

  • Ogier de Baulny H, Gérard M, Saudubray JM, Zittoun J (1998) Remethylation defects: guidelines for clinical diagnosis and treatment. Eur J Pediatr 157(Suppl 2):S77–S83

    Article  PubMed  Google Scholar 

  • Outinen PA, Sood SK, Pfeifer SI et al (1999) Homocysteine-induced endoplasmic reticulum stress and growth arrest leads to specific changes in gene expression in human vascular endothelial cells. Blood 94(3):959–967

    CAS  PubMed  Google Scholar 

  • Papatheodorou L, Weiss N (2007) Vascular oxidant stress and inflammation in hyperhomocysteinemia. Antioxid Redox Signal 9(11):1941–1945

    Article  CAS  PubMed  Google Scholar 

  • Patton N, Beatty S, Lloyd IC, Wraith JE (2000) Optic atrophy in association with cobalamin C (Cbl-C) disease. Ophthalmic Genet 21(3):151–154

    CAS  PubMed  Google Scholar 

  • Pogribna M, Melnyk S, Pogribny I, Chango A, Yi P, James SJ (2001) Homocysteine metabolism in children with Down syndrome: in vitro modulation. Am J Hum Genet 69(1):88–95

    Article  CAS  PubMed  Google Scholar 

  • Powers JM, Rosenblatt DS, Schmidt RE et al (2001) Neurological and neuropathologic heterogeneity in two brothers with cobalamin C deficiency. Ann Neurol 49(3):396–400

    Article  CAS  PubMed  Google Scholar 

  • Profitlich LE, Kirmse B, Wasserstein MP, Diaz GA, Srivastava S (2009) High prevalence of structural heart disease in children with Cbl-C-type methylmalonic aciduria and homocystinuria. Mol Genet Metab 98(4):344–348

    Article  CAS  PubMed  Google Scholar 

  • Regland B, Gottfries CG (1992) Slowed synthesis of DNA and methionine is a pathogenetic mechanism common to dementia in Down’s syndrome, AIDS and Alzheimer’s disease? Med Hypotheses 38(1):11–19

    Article  CAS  PubMed  Google Scholar 

  • Regland B, Abrahamsson L, Blennow K, Gottfries CG, Wallin A (1992) Vitamin B12 in CSF: reduced CSF/serum B12 ratio in demented men. Acta Neurol Scand 85(4):276–281

    Article  CAS  PubMed  Google Scholar 

  • Ricci D, Pane M, Deodato F et al (2005) Assessment of visual function in children with methylmalonic aciduria and homocystinuria. Neuropediatrics 36(3):181–185

    Article  CAS  PubMed  Google Scholar 

  • Robb RM, Dowton SB, Fulton AB, Levy HL (1984) Retinal degeneration in vitamin B12 disorder associated with methylmalonic aciduria and sulfur amino acid abnormalities. Am J Ophthalmol 97(6):691–696

    CAS  PubMed  Google Scholar 

  • Robertson KD (2002) DNA methylation and chromatin. Unraveling the tangled web. Oncogene 21(35):5361–5379

    Article  CAS  PubMed  Google Scholar 

  • Rosenblatt DS, Aspler AL, Shevell MI, Pletcher BA, Fenton WA, Seashore MR (1997) Clinical heterogeneity and prognosis in combined methylmalonic aciduria and homocystinuria (Cbl-C). J Inherit Metab Dis 20(4):528–538

    Article  CAS  PubMed  Google Scholar 

  • Rossi A, Biancheri R, Tortori-Donati P (2001) The pathogenesis of hydrocephalus in inborn errors of the single carbon transfer pathway. Neuropediatrics 32(6):335–336

    CAS  PubMed  Google Scholar 

  • Roze E, Gervais D, Demeret S et al (2003) Neuropsychiatric disturbances in presumed late-onset cobalamin C disease. Arch Neurol 60(10):1457–1462

    Article  PubMed  Google Scholar 

  • Russo P, Doyon J, Sonsino E, Ogier H, Saudubray JM (1992) A congenital anomaly of vitamin B12 metabolism: a study of three cases. Hum Pathol 23(5):504–512

    Article  CAS  PubMed  Google Scholar 

  • Sauer SW, Opp S, Haarmann A, Okun JG, Kölker S, Morath MA (2009) Long-term exposure of human proximal tubule cells to hydroxycobalamin[c-lactam] as a possible model to study renal disease in methylmalonic acidurias. J Inherit Metab Dis 32(6):720–727, Epub 2009 Oct 10

    Article  CAS  PubMed  Google Scholar 

  • Scalabrino G, Veber D, Mutti E (2007) New pathogenesis of the cobalamin-deficient neuropathy. Med Secoli 19(1):9–18

    PubMed  Google Scholar 

  • Schimel AM, Mets MB (2006) The natural history of retinal degeneration in association with cobalamin C (cbl C) disease. Ophthalmic Genet 27(1):9–14

    Article  CAS  PubMed  Google Scholar 

  • Scott JM, Dinn JJ, Wilson P, Weir DG (1981) Pathogenesis of subacute combined degeneration: a result of methyl group deficiency. Lancet 2(8242):334–337

    Article  CAS  PubMed  Google Scholar 

  • Selzer RR, Rosenblatt DS, Laxova R, Hogan K (2003) Adverse effect of nitrous oxide in a child with 5, 10-methylenetetrahydrofolate reductase deficiency. N Engl J Med 349(1):45–50

    Article  PubMed  Google Scholar 

  • Sharma AP, Greenberg CR, Prasad AN, Prasad C (2007) Hemolytic uremic syndrome (HUS) secondary to cobalamin C (Cbl-C) disorder. Pediatr Nephrol 22(12):2097–2103

    Article  PubMed  Google Scholar 

  • Shinnar S, Singer HS (1984) Cobalamin C mutation (methylmalonic aciduria and homocystinuria) in adolescence. A treatable cause of dementia and myelopathy. N Engl J Med 311(7):451–454

    Article  CAS  PubMed  Google Scholar 

  • Smith AD (2008) The worldwide challenge of the dementias: a role for B vitamins and homocysteine? Food Nutr Bull 29(Suppl 2):S143–S172

    PubMed  Google Scholar 

  • Smith KL, Greenwood CE (2008) Weight loss and nutritional considerations in Alzheimer disease. J Nutr Elder 27(3–4):381–403

    Article  PubMed  Google Scholar 

  • Smith SE, Kinney HC, Swoboda KJ, Levy HL (2006) Subacute combined degeneration of the spinal cord in Cbl-C disorder despite treatment with B12. Mol Genet Metab 88(2):138–145

    Article  CAS  PubMed  Google Scholar 

  • Surtees R, Leonard J, Austin S (1991) Association of demyelination with deficiency of cerebrospinal-fluid S-adenosylmethionine in inborn errors of methyl-transfer pathway. Lancet 338(8782–8783):1550–1554

    Article  CAS  PubMed  Google Scholar 

  • Tchantchou F, Graves M, Ortiz D, Chan A, Rogers E, Shea TB (2006) S-adenosyl methionine: a connection between nutritional and genetic risk factors for neurodegeneration in Alzheimer’s disease. J Nutr Health Aging 10(6):541–544

    CAS  PubMed  Google Scholar 

  • Thauvin-Robinet C, Roze E, Couvreur G et al (2008) The adolescent and adult form of cobalamin C disease: clinical and molecular spectrum. J Neurol Neurosurg Psychiatry 79(6):725–728, Epub 2008 Feb 1

    Article  CAS  PubMed  Google Scholar 

  • Tomaske M, Bosk A, Heinemann MK et al (2001) Cbl-C/D defect combined with haemodynamically highly relevant VSD. J Inherit Metab Dis 24(4):511–512

    Article  CAS  PubMed  Google Scholar 

  • Traboulsi EI, Silva JC, Geraghty MT, Maumenee IH, Valle D, Green WR (1992) Ocular histopathologic characteristics of cobalamin C type vitamin B12 defect with methylmalonic aciduria and homocystinuria. Am J Ophthalmol 113(3):269–280

    CAS  PubMed  Google Scholar 

  • Tsai AC, Morel CF, Scharer G et al (2007) Late-onset combined homocystinuria and methylmalonic aciduria (Cbl-C) and neuropsychiatric disturbance. Am J Med Genet A 143A(20):2430–2434

    Article  CAS  PubMed  Google Scholar 

  • Tsina EK, Marsden DL, Hansen RM, Fulton AB (2005) Maculopathy and retinal degeneration in cobalamin C methylmalonic aciduria and homocystinuria. Arch Ophthalmol 123(8):1143–1146

    Article  PubMed  Google Scholar 

  • Van Hove JL, Van Damme-Lombaerts R, Grünewald S et al (2002) Am J Med Genet 111(2):195–201

    Article  PubMed  Google Scholar 

  • Vidal-Alaball J, Butler CC, Cannings-John R, et al (2005) Oral vitamin B12 versus intramuscular vitamin B12 for vitamin B12 deficiency. Cochrane Database Syst Rev 20(3):CD004655

    Google Scholar 

  • Wang G, Siow YL, K O (2000) Homocysteine stimulates nuclear factor kappaB activity and monocyte chemoattractant protein-1 expression in vascular smooth-muscle cells: a possible role for protein kinase C. Biochem J 352(Pt 3):817–826

    Article  CAS  PubMed  Google Scholar 

  • Weisfeld-Adams JD, Morrissey MA, Kirmse BM et al (2010) Newborn screening and early biochemical follow-up in combined methylmalonic aciduria and homocystinuria, Cbl-C type, and utility of methionine as a secondary screening analyte. Mol Genet Metab 99(2):116–123

    Article  CAS  PubMed  Google Scholar 

  • Weiss N (2005) Mechanisms of increased vascular oxidant stress in hyperhomocysteinemia and its impact on endothelial function. Curr Drug Metab 6(1):27–36

    Article  CAS  PubMed  Google Scholar 

  • Welch GN, Loscalzo J (1998) Homocysteine and atherothrombosis. N Engl J Med 338(15):1042–1050

    Article  CAS  PubMed  Google Scholar 

  • Wong A, Mok V, Fan YH, Lam WW, Liang KS, Wong KS (2006) Hyperhomocysteinemia is associated with volumetric white matter change in patients with small vessel disease. J Neurol 253(4):441–447

    Article  PubMed  Google Scholar 

  • Wu S, Gonzalez-Gomez I, Coates T, Yano S (2005) Cobalamin C disease presenting with hemophagocytic lymphohistiocytosis. Pediatr Hematol Oncol 22(8):717–721

    Article  PubMed  Google Scholar 

  • Yasui K, Kowa H, Nakaso K, Takeshima T, Nakashima K (2000) Plasma homocysteine and MTHFR C677T genotype in levodopa-treated patients with PD. Neurology 55(3):437–440

    CAS  PubMed  Google Scholar 

  • Younessi D, Moseley K, Yano S (2009) Creatine metabolism in combined methylmalonic aciduria and homocystinuria disease revisited. Ann Neurol 65(4):481–482

    Article  PubMed  Google Scholar 

  • Zou CG, Banerjee R (2005) Homocysteine and redox signaling. Antioxid Redox Signal 7(5–6):547–559

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlo Dionisi-Vici.

Additional information

Communicated by: Brian Fowler

References to electronic databases: Methylmalonic aciduria and homocystinuria cbl-C type: OMIM #277400

MMACHC gene: OMIM *609831

Competing interest: None declared.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martinelli, D., Deodato, F. & Dionisi-Vici, C. Cobalamin C defect: natural history, pathophysiology, and treatment. J Inherit Metab Dis 34, 127–135 (2011). https://doi.org/10.1007/s10545-010-9161-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10545-010-9161-z

Keywords

Navigation