Skip to main content

Summary

Vitamin B12 (Cbl) is needed for just two metabolic reactions in man, the methylation of homocysteine to methionine (cofactor methyl-Cbl) and the conversion of methylmalonyl-CoA to succinyl-CoA (cofactor adenosyl-Cbl). A complex sequence of processes is required to convert dietary Cbl to its cofactors and to correctly deliver them to the target enzymes. A wide range of acquired or hereditary disorders of absorption, transport and intracellular processing of Cbl are known, resulting in combined methylmalonic aciduria and homocystinuria or each in isolation. Seventeen distinct genetic disorders have been identified involving transcription factors, carrier proteins, receptors, membrane proteins, molecular chaperones and enzymes, and the genes have been characterised for each of these, although the exact function of some of the proteins remains to be elucidated. Main clinical hallmarks of these disorders are haematological and neurological disease of varying severity. Diagnosis centres on measurement of the two precursors of the Cbl enzymes, methylmalonic acid and homocysteine, together with measurements of other parameters such as total vitamin B12, holotranscobalamin, 3-hydroxypropionic acid and methylcitric acid, C3-acylcarnitine and methionine. Absorption and transport defects respond well to treatment with Cbl. Intracellular processing defects also respond to Cbl, but biochemical and clinical abnormalities may not fully resolve, and long-term outcome can be poor. Prenatal diagnosis can be reliably performed in those disorders where this is indicated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aminoff M, Carter JE, Chadwick RB, Johnson C, Grasbeck R, Abdelaal MA, et al. Mutations in CUBN, encoding the intrinsic factor-vitamin B-12 receptor, cubilin, cause hereditary megaloblastic anaemia 1. Nat Genet. 1999;21(3):309–13.

    Article  CAS  PubMed  Google Scholar 

  • Banerjee R, Gherasim C, Padovani D. The tinker, tailor, soldier in intracellular B12 trafficking. Curr Opin Chem Biol. 2009;13(4):484–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baumgartner MR, Horster F, Dionisi-Vici C, Haliloglu G, Karall D, Chapman KA, et al. Proposed guidelines for the diagnosis and management of methylmalonic and propionic acidemia. Orphanet J Rare Dis. 2014;9:130.

    Article  PubMed  PubMed Central  Google Scholar 

  • Beck BB, van Spronsen F, Diepstra A, Berger RM, Komhoff M. Renal thrombotic microangiopathy in patients with cblC defect: review of an under-recognized entity. Pediatr Nephrol. 2017;32(5):733–41.

    Article  PubMed  Google Scholar 

  • Bor MV, Cetin M, Aytac S, Altay C, Nexo E. Nonradioactive vitamin B12 absorption test evaluated in controls and in patients with inherited malabsorption of vitamin B12. Clin Chem. 2005;51(11):2151–5.

    Article  CAS  PubMed  Google Scholar 

  • Coelho D, Suormala T, Stucki M, Lerner-Ellis JP, Rosenblatt DS, Newbold RF, et al. Gene identification for the cblD defect of vitamin B12 metabolism. N Engl J Med. 2008;358(14):1454–64.

    Article  CAS  PubMed  Google Scholar 

  • Coelho D, Kim JC, Miousse IR, Fung S, du Moulin M, Buers I, et al. Mutations in ABCD4 cause a new inborn error of vitamin B12 metabolism. Nat Genet. 2012;44(10):1152–5.

    Article  CAS  PubMed  Google Scholar 

  • Fettelschoss V, Burda P, Sagne C, Coelho D, De Laet C, Lutz S, et al. Clinical or ATPase domain mutations in ABCD4 disrupt the interaction between the vitamin B12-trafficking proteins ABCD4 and LMBD1. J Biol Chem. 2017;292(28):11980–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fischer S, Huemer M, Baumgartner M, Deodato F, Ballhausen D, Boneh A, et al. Clinical presentation and outcome in a series of 88 patients with the cblC defect. J Inherit Metab Dis. 2014;

    Google Scholar 

  • Fowler B, Leonard JV, Baumgartner MR. Causes of and diagnostic approach to methylmalonic acidurias. J Inherit Metab Dis. 2008;31(3):350–60.

    Article  CAS  PubMed  Google Scholar 

  • Fyfe JC, Madsen M, Hojrup P, Christensen EI, Tanner SM, de la Chapelle A, et al. The functional cobalamin (vitamin B-12)-intrinsic factor receptor is a novel complex of cubilin and amnionless. Blood. 2004;103(5):1573–9.

    Article  CAS  PubMed  Google Scholar 

  • Gerard M, Morin G, Bourillon A, Colson C, Mathieu S, Rabier D, et al. Multiple congenital anomalies in two boys with mutation in HCFC1 and cobalamin disorder. Eur J Med Genet. 2015;58(3):148–53.

    Article  CAS  PubMed  Google Scholar 

  • Gueant JL, Chery C, Oussalah A, Nadaf J, Coelho D, Josse T, et al. Publisher correction: a PRDX1 mutant allele causes a MMACHC secondary epimutation in cblC patients. Nat Commun. 2018;9(1):554.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hannah-Shmouni F, Cruz V, Schulze A, Mercimek-Andrews S. Transcobalamin receptor defect: identification of two new cases through positive newborn screening for propionic/methylmalonic aciduria and long-term outcome. Am J Med Genet A. 2018;176(6):1411–5.

    Article  CAS  PubMed  Google Scholar 

  • Hannibal L, Kim J, Brasch NE, Wang S, Rosenblatt DS, Banerjee R, et al. Processing of alkylcobalamins in mammalian cells: a role for the MMACHC (cblC) gene product. Mol Genet Metab. 2009;97(4):260–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Horster F, Baumgartner MR, Viardot C, Suormala T, Burgard P, Fowler B, et al. Long-term outcome in methylmalonic acidurias is influenced by the underlying defect (mut0, mut-, cblA, cblB). Pediatr Res. 2007;62(2):225–30.

    Article  PubMed  Google Scholar 

  • Hu S, Mei S, Liu N, Kong X. Molecular genetic characterization of cblC defects in 126 pedigrees and prenatal genetic diagnosis of pedigrees with combined methylmalonic aciduria and homocystinuria. BMC Med Genet. 2018;19(1):154.

    Article  PubMed  PubMed Central  Google Scholar 

  • Huemer M, Simma B, Fowler B, Suormala T, Bodamer OA, Sass JO. Prenatal and postnatal treatment in cobalamin C defect. J Pediatr. 2005;147(4):469–72.

    Article  CAS  PubMed  Google Scholar 

  • Huemer M, Burer C, Jesina P, Kozich V, Landolt MA, Suormala T, et al. Clinical onset and course, response to treatment and outcome in 24 patients with the cblE or cblG remethylation defect complemented by genetic and in vitro enzyme study data. J Inherit Metab Dis. 2015;38(5):957–67.

    Article  CAS  PubMed  Google Scholar 

  • Huemer M, Diodato D, Schwahn B, Schiff M, Bandeira A, Benoist JF, et al. Guidelines for diagnosis and management of the cobalamin-related remethylation disorders cblC, cblD, cblE, cblF, cblG, cblJ and MTHFR deficiency. J Inherit Metab Dis. 2017;40(1):21–48.

    Article  CAS  PubMed  Google Scholar 

  • Huemer M, Diodato D, Martinelli D, Olivieri G, Blom H, Gleich F, et al. Phenotype, treatment practice and outcome in the cobalamin-dependent remethylation disorders and MTHFR deficiency: data from the E-HOD registry. J Inherit Metab Dis. 2018;

    Google Scholar 

  • Karth P, Singh R, Kim J, Costakos D. Bilateral central retinal artery occlusions in an infant with hyperhomocysteinemia. J AAPOS. 2012;16(4):398–400.

    Article  PubMed  Google Scholar 

  • Kim J, Gherasim C, Banerjee R. Decyanation of vitamin B12 by a trafficking chaperone. Proc Natl Acad Sci U S A. 2008;105(38):14551–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kolker S, Valayannopoulos V, Burlina AB, Sykut-Cegielska J, Wijburg FA, Teles EL, et al. The phenotypic spectrum of organic acidurias and urea cycle disorders. Part 2: the evolving clinical phenotype. J Inherit Metab Dis. 2015;38(6):1059–74.

    Article  PubMed  Google Scholar 

  • Koufaris C, Alexandrou A, Tanteles GA, Anastasiadou V, Sismani C. A novel HCFC1 variant in male siblings with intellectual disability and microcephaly in the absence of cobalamin disorder. Biomed Rep. 2016;4(2):215–8.

    Article  CAS  PubMed  Google Scholar 

  • Lerner-Ellis JP, Tirone JC, Pawelek PD, Dore C, Atkinson JL, Watkins D, et al. Identification of the gene responsible for methylmalonic aciduria and homocystinuria, cblC type. Nat Genet. 2006;38(1):93–100.

    Article  CAS  PubMed  Google Scholar 

  • Lerner-Ellis JP, Anastasio N, Liu J, Coelho D, Suormala T, Stucki M, et al. Spectrum of mutations in MMACHC, allelic expression, and evidence for genotype-phenotype correlations. Hum Mutat. 2009;30(7):1072–81.

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Liu YP, Zhang Y, Song JQ, Zheng H, Dong H, et al. Heterogeneous phenotypes, genotypes, treatment and prevention of 1 003 patients with methylmalonic acidemia in the mainland of China. Zhonghua Er Ke Za Zhi. 2018;56(6):414–20.

    CAS  PubMed  Google Scholar 

  • Matsui SM, Mahoney MJ, Rosenberg LE. The natural-history of the inherited methylmalonic acidemias. N Engl J Med. 1983;308(15):857–61.

    Article  CAS  PubMed  Google Scholar 

  • Nexo E, Hoffmann-Lucke E. Holotranscobalamin, a marker of vitamin B-12 status: analytical aspects and clinical utility. Am J Clin Nutr. 2011;94(1):359S–65S.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nielsen MJ, Rasmussen MR, Andersen CBF, Nexo E, Moestrup SK. Vitamin B-12 transport from food to the body’s cells-a sophisticated, multistep pathway. Nat Rev Gastro Hepat. 2012;9(6):345–54.

    Article  CAS  Google Scholar 

  • Parini R, Furlan F, Brambilla A, Codazzi D, Vedovati S, Corbetta C, et al. Severe neonatal metabolic decompensation in methylmalonic acidemia caused by CblD defect. JIMD Rep. 2013;11:133–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Plessl T, Burer C, Lutz S, Yue WW, Baumgartner MR, Froese DS. Protein destabilization and loss of protein-protein interaction are fundamental mechanisms in cblA-type methylmalonic aciduria. Hum Mutat. 2017;38(8):988–1001.

    Article  CAS  PubMed  Google Scholar 

  • Pupavac M, Watkins D, Petrella F, Fahiminiya S, Janer A, Cheung W, et al. Inborn error of cobalamin metabolism associated with the intracellular accumulation of transcobalamin-bound cobalamin and mutations in ZNF143, which codes for a transcriptional activator. Hum Mutat. 2016;37(9):976–82.

    Article  CAS  PubMed  Google Scholar 

  • Quintana AM, Yu HC, Brebner A, Pupavac M, Geiger EA, Watson A, et al. Mutations in THAP11 cause an inborn error of cobalamin metabolism and developmental abnormalities. Hum Mol Genet. 2017;

    Google Scholar 

  • Rutsch F, Gailus S, Miousse IR, Suormala T, Sagne C, Toliat MR, et al. Identification of a putative lysosomal cobalamin exporter altered in the cblF defect of vitamin B12 metabolism. Nat Genet. 2009;41(2):234–9.

    Article  CAS  PubMed  Google Scholar 

  • Stucki M, Coelho D, Suormala T, Burda P, Fowler B, Baumgartner MR. Molecular mechanisms leading to three different phenotypes in the cblD defect of intracellular cobalamin metabolism. Hum Mol Genet. 2012;21(6):1410–8.

    Article  CAS  PubMed  Google Scholar 

  • Tanner SM, Aminoff M, Wright FA, Liyanarachchi S, Kuronen M, Saarinen A, et al. Amnionless, essential for mouse gastrulation, is mutated in recessive hereditary megaloblastic anemia. Nat Genet. 2003;33(3):426–9.

    Article  CAS  PubMed  Google Scholar 

  • Tanner SM, Li Z, Perko JD, Oner C, Cetin M, Altay C, et al. Hereditary juvenile cobalamin deficiency caused by mutations in the intrinsic factor gene. Proc Natl Acad Sci U S A. 2005;102(11):4130–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thauvin-Robinet C, Roze E, Couvreur G, Horellou MH, Sedel F, Grabli D, et al. The adolescent and adult form of cobalamin C disease: clinical and molecular spectrum. J Neurol Neurosurg Psychiatry. 2008;79(6):725–8.

    Article  CAS  PubMed  Google Scholar 

  • Trefz FK, Scheible D, Frauendienst-Egger G, Huemer M, Suomala T, Fowler B, et al. Successful intrauterine treatment of a patient with cobalamin C defect. Mol Genet Metab Rep. 2016;6:55–9.

    Article  PubMed  PubMed Central  Google Scholar 

  • Vilaseca MA, Vilarinho L, Zavadakova P, Vela E, Cleto E, Pineda M, et al. CblE type of homocystinuria: mild clinical phenotype in two patients homozygous for a novel mutation in the MTRR gene. J Inherit Metab Dis. 2003;26(4):361–9.

    Article  CAS  PubMed  Google Scholar 

  • Watkins D, Rosenblatt DS. Inherited disorders of folate and cobalamin transport and metabolism. In: Valle D, Beaudet AL, Vogelstein B, Kinzler KW, Antonarakis SE, Ballabio A, et al., editors. The online metabolic and molecular bases of inherited disease. New York: McGraw-Hill Medical; 2017.

    Google Scholar 

  • Watkins D, Rosenblatt DS, Fowler B. Disorders of cobalamin and folate transport and metabolism. In: Saudubray JM, Baumgartner MR, Walter J, editors. Inborn metabolic diseases. Diagnosis and treatment. 6th ed. Berlin, Heidelberg: Springer; 2016. p. 385–400.

    Chapter  Google Scholar 

  • Whitehead VM. Acquired and inherited disorders of cobalamin and folate in children. Br J Haematol. 2006;134(2):125–36.

    Article  CAS  PubMed  Google Scholar 

  • Yu HC, Sloan JL, Scharer G, Brebner A, Quintana AM, Achilly NP, et al. An X-linked cobalamin disorder caused by mutations in transcriptional coregulator HCFC1. Am J Hum Genet. 2013;93(3):506–14.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthias R. Baumgartner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Baumgartner, M.R., Froese, D.S. (2022). Disorders of Cobalamin Metabolism. In: Blau, N., Dionisi Vici, C., Ferreira, C.R., Vianey-Saban, C., van Karnebeek, C.D.M. (eds) Physician's Guide to the Diagnosis, Treatment, and Follow-Up of Inherited Metabolic Diseases. Springer, Cham. https://doi.org/10.1007/978-3-030-67727-5_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-67727-5_28

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-67726-8

  • Online ISBN: 978-3-030-67727-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics