Skip to main content
Log in

Long-term characterization of neural electrodes based on parylene-caulked polydimethylsiloxane substrate

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

This study investigates the mechanical and long-term electrical properties of parylene-caulked polydimethylsiloxane (PDMS) as a substrate for implantable electrodes. The parylene-caulked PDMS is a structure where particles of parylene fill the porous surface of PDMS. This material is expected to have low water absorption and desirable mechanical properties such as flexibility and elasticity that are beneficial in many biomedical applications. To evaluate the mechanical property and electrical stability of parylene-caulked PDMS for potential in-vivo uses, tensile tests were conducted firstly, which results showed that the mechanical strength of parylene-caulked PDMS was comparable to that of native PDMS. Next, surface electrodes based on parylene-caulked PDMS were fabricated and their impedance was measured in phosphate-buffered saline (PBS) solution at 36.5 °C over seven months. The electrodes based on parylene-caulked PDMS exhibited the improved stability in impedance over time than native PDMS. Thus, with improved electrical stability in wet environment and preserved mechanical properties of PDMS, the electrodes based on parylene-caulked PDMS are expected to be suitable for long-term in-vivo applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • ASTM D412-06a, Standard test methods for vulcaizaed rubber and thermoplastic elastomers-tension, www.astm.org (2012).

  • M. J. Baker, J. Trevisan, P. Bassan, R. Bhargava, H. J. Butler, K. M. Dorling, P. R. Fielden, S. W. Fogarty, N. J. Fullwood, K. A. Heys, C. Hughes, P. Lasch, P. L. Martin-Hirsch, B. Obinaju, G. D. Sockalingum, J. Sulé-Suso, R. J. Strong, M. J. Walsh, B. R. Wood, P. Gardner, F. L. Martin, Nat Protoc 9, 1771 (2014)

    Article  Google Scholar 

  • D. Byun, S. J. Cho, S. Kim, J Micromech Microeng 23, 125010 (2013)

    Article  Google Scholar 

  • E. Castagnola, A. Ansaldo, E. Maggiolini, T. Ius, M. Skrap, D. Ricci, L. Fadiga, Front Neuroeng 7, 8 (2014)

    Article  Google Scholar 

  • V. Castagnola, E. Descamps, A. Lecestre, L. Dahan, J. Remaud, L. G. Nowak, C. Bergaud, Biosens Bioelectron 67, 450 (2015)

    Article  Google Scholar 

  • K. C. Cheung, Biomed Microdevices 9, 923 (2007)

    Article  Google Scholar 

  • K. M. Choi, J. A. Rogers, J Am Chem Soc 125, 4060 (2003)

    Article  Google Scholar 

  • N. Chou, J. Jeong, S. Kim, J Micromech Microeng 23, 125035 (2013a)

    Article  Google Scholar 

  • N. Chou, S. Yoo, S. Kim, IEEE Trans Neural Syst Rehabil Eng 21, 544 (2013b)

    Article  Google Scholar 

  • W. Chun, N. Chou, S. Cho, S. Yang, S. Kim, Prog Org Coat 77, 537 (2014)

    Article  Google Scholar 

  • E. M. Davis, N. M. Benetatos, W. F. Regnault, K. I. Winey, Y. A. Elabd, Polymer 52, 5378 (2011)

    Article  Google Scholar 

  • O. Graudejus, P. Görrn, S. Wagner, ACS Appl Mater Interfaces 2, 1927 (2010)

    Article  Google Scholar 

  • P. Grosse, Clin Neurophysiol 113, 1523 (2002)

    Article  Google Scholar 

  • L. Guo, G. S. Guvanasen, X. Liu, C. Tuthill, T. R. Nichols, S. P. DeWeerth, IEEE Trans Biomed Circuits Syst 7, 1 (2013)

    Article  Google Scholar 

  • R. R. Harrison, IEEE Cust Integr Circuits Conf (IEEE, 2007), 115–122 (2007)

  • J. M. Hsu, L. Rieth, R. A. Normann, P. Tathireddy, F. Solzbacher, IEEE Trans Biomed Eng 56, 23 (2009)

    Article  Google Scholar 

  • J. Jean, A. Wang, V. Bulović, Org Electron 31, 120 (2016)

    Article  Google Scholar 

  • J. Jeong, N. Chou, and S. Kim. Int IEEE/EMBS Conf Neural Eng NER 911 (2013).

  • X. Kang, J.-Q. Liu, H. Tian, B. Yang, Y. Nuli, C. Yang, J Microelectromech Syst 24, 319 (2015)

    Article  Google Scholar 

  • X. Kang, J. Liu, H. Tian, B. Yang, Y. NuLi, C. Yang, Sensors Actuators B Chem 225, 267 (2016)

    Article  Google Scholar 

  • S. J. Kim, I. T. Lee, H.-Y. Lee, Y. H. Kim, Smart Mater Struct 15, 1540 (2006)

    Article  Google Scholar 

  • B. J. Kim, C. A. Gutierrez, E. Meng, J Microelectromech Syst 24, 1534 (2015)

    Article  Google Scholar 

  • J. T. W. Kuo, B. J. Kim, S. A. Hara, C. D. Lee, C. A. Gutierrez, T. Q. Hoang, E. Meng, Lab Chip 13, 554 (2013)

    Article  Google Scholar 

  • K. Lee, A. Singh, J. He, S. Massia, B. Kim, G. Raupp, Sensors Actuators B Chem 102, 67 (2004)

    Article  Google Scholar 

  • Y. Lei, Y. Liu, W. Wang, W. Wu, Z. Li, Lab Chip 11, 1385 (2011)

    Article  Google Scholar 

  • M. Ludvigsson, J. Lindgren, J. Tegenfeldt, Electrochim Acta 45, 2267 (2000)

    Article  Google Scholar 

  • A. Mercanzini, K. Cheung, D. L. Buhl, M. Boers, A. Maillard, P. Colin, J. C. Bensadoun, A. Bertsch, P. Renaud, Sensors actuators. A Phys 143, 90 (2008)

    Google Scholar 

  • R. A. Normann, Nat Clin Pract Neurol 3, 444 (2007)

    Article  Google Scholar 

  • M. Ochoa, P. Wei, A. J. Wolley, K. J. Otto, B. Ziaie, Biomed Microdevices 15, 437 (2013)

    Article  Google Scholar 

  • D. C. Rodger, A. J. Fong, W. Li, H. Ameri, A. K. Ahuja, C. Gutierrez, I. Lavrov, H. Zhong, P. R. Menon, E. Meng, J. W. Burdick, R. R. Roy, V. R. Edgerton, J. D. Weiland, M. S. Humayun, Y. C. Tai, Sensors actuators. B Chem 132, 449 (2008)

    Google Scholar 

  • F. J. Rodri’guez, D. Ceballos, M. Schu¨ttler, A. Valero, E. Valderrama, T. Stieglitz, X. Navarro, J Neurosci Methods 98, 105 (2000)

    Article  Google Scholar 

  • P. J. Rousche, D. S. Pellinen, D. P. Pivin, J. C. Williams, R. J. Vetter, D. R. Kipke, IEEE Trans Biomed Eng 48, 361 (2001)

    Article  Google Scholar 

  • B. Rubehn, T. Stieglitz, Biomaterials 31, 3449 (2010)

    Article  Google Scholar 

  • Y. Rui, J. Liu, Y. Wang, C. Yang, Microsyst Technol 17, 437 (2011)

    Article  Google Scholar 

  • J. P. Seymour, Y. M. Elkasabi, H. Y. Chen, J. Lahann, D. R. Kipke, Biomaterials 30, 6158 (2009)

    Article  Google Scholar 

  • T. Stieglitz, M. Schuettler, K. P. Koch, IEEE Eng Med Biol Mag 24, 58 (2005)

    Article  Google Scholar 

  • M. W. Toepke, D. J. Beebe, Lab Chip 6, 1484 (2006)

    Article  Google Scholar 

  • A. V. Vasenkov, J Mol Model 17, 3219 (2011)

    Article  Google Scholar 

  • R. P. Von Metzen, T. Stieglitz, Biomed Microdevices 15, 727 (2013)

    Article  Google Scholar 

  • S. Yamagiwa, M. Ishida, T. Kawano, Appl Phys Lett 107, 083502 (2015)

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by grants from the Basic Science Research Program of the National Research Foundation (2014R1A1A3050285), the Integrative Aging Research Center of the Gwangju Institute of Science and Technology (GIST), DGIST MIREBraiN Program (2016010043) and R&D Program (16-BD-0404) funded by the Ministry of Science, ICT and Future Planning, Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sohee Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jeong, J., Chou, N. & Kim, S. Long-term characterization of neural electrodes based on parylene-caulked polydimethylsiloxane substrate. Biomed Microdevices 18, 42 (2016). https://doi.org/10.1007/s10544-016-0065-z

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s10544-016-0065-z

Keywords

Navigation