Skip to main content
Log in

Characterization of transgenic Poncirus trifoliata overexpressing the ferric chelate reductase gene CjFRO2 from Citrus junos

  • Original Papers
  • Published:
Biologia Plantarum

Abstract

Iron deficiency chlorosis occurs frequently in calcareous soils. The transformation of plants with ferric chelate reductase genes (FROs) provides a potential strategy to alleviate plant chlorosis under iron deficiency. A CjFRO2 gene isolated from Citrus junos Sieb. ex Tanaka was introduced into Poncirus trifoliata (L.) Raf via Agrobacterium-mediated transformation. The transgene integration and expression were confirmed by PCR, Southern blot, and real-time PCR analyses. Hydroponic- and soil-grown transgenic plants were tested for their tolerance to iron deficiency. Compared with nontransgenic (NT) P. trifoliata plants, a rhizosphere acidification capacity in the transgenic lines increased, and a ferric chelate reductase activity in roots was up to 3.39- and 2.93-fold higher in a hydroponic solution and soil, respectively. A transgenic line TO-8, which reacted similarly in hydroponics and soil, appeared tolerant to the iron deficiency. Its leaf chlorophyll and ferrous ion content was significantly higher than in NT. These results indicate that tolerance to the iron deficiency in P. trifoliata could be improved through the genetic engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

Chl:

chlorophyll

GFP:

green fluorescence protein

IDC:

iron deficiency chlorosis

FCR:

ferric chelate reductase

FRO :

ferric chelate reductase gene

NT:

nontransgenic Poncirus trifoliate

References

  • Brand, J.D., Tang, C., Rathjen, A.J.: Screening rough-seeded lupins (Lupinus pilosus Murr. and Lupinus atlanticus Glads.) for tolerance to calcareous soils. — Plant Soil. 245: 261–275, 2002.

    Article  CAS  Google Scholar 

  • Cao, L., Peng, L.Z., Peng, A.H., Ling, L.L., Jiang, D., Wang, F.S., Fan, D., Wang, J.Z., Ma, X.H., Zhang, W.W., Chang, Q.H., Wang, X.X.: [Preliminary identification of alkaliresistance hybrid seedlings of Junos and Trifoliate orange.] — J. Fruit Sci. 28: 20–25, 2011. [In Chin.]

    CAS  Google Scholar 

  • Chaney, R.L., Brown, J.C., Tiffin, L.O.: Obligatory reduction of ferric chelates in iron uptake by soybean. — Plant Physiol. 50: 208–213, 1972.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chaney, R.L., Coulombe, B.A., Bell, P.F., Angle, J.S.: Detailed method to screen dicot cultivars for resistance to Fechlorosis using FeDTPA and bicarbonate in nutrient solutions. — J. Plant Nutr. 15: 2063–2083, 1992.

    Article  CAS  Google Scholar 

  • Connolly, E.L., Campbell, N.H., Grotz, N., Prichard, C.L., Guerinot, M.L.: Overexpression of the FRO2 ferric chelate reductase confers tolerance to growth on low iron and uncovers post-transcriptional control. — Plant Physiol. 133: 1102–1110, 2003.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Dancis, A., Klausner, R.D., Hinnebusch, A.G., Barriocanal, J.G.: Genetic evidence that ferric reductase is required for iron uptake in Saccharomyces cerevisiae. — Mol. cell. Biol. 10: 2294–2301, 1990.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Dancis, A., Roman, D.G., Anderson, G.J., Hinnebusch, A.G., Klausner, R.D.: Ferric reductase of Saccharomyces cerevisiae: molecular characterization, role in iron uptake, and transcriptional control by iron. — Proc. nat. Acad. Sci. USA. 89: 3869–3876, 1992.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Dutt, M., Grosser, J.W.: Evaluation of parameters affecting Agrobacterium-mediated transformation of citrus. — Plant Cell Tissue Organ Cult. 98: 331–340, 2009.

    Article  CAS  Google Scholar 

  • Egilla, J.N., Byrne, D.H., Reed, D.W.: Iron stress response of three peach rootstock cultivars: ferric-iron reduction capacity. — J. Plant Nutr. 17: 2079–2103, 1994.

    Article  CAS  Google Scholar 

  • Hiscox, J.C., Israelstam, G.F.: A method for the extraction of chlorophyll from tissue without maceration. — Can. J. Bot. 57: 1332–1334, 1979.

    Article  CAS  Google Scholar 

  • Li, L.: [Physiological and molecular basis for resistance to iron chlorosis in Malus xiaojinensis and Citrus junos.] - PhD Thesis. Southwest Agriculture University, Chongqing 2002. [In Chin.]

    Google Scholar 

  • Li, L., Fan, Y.H., Luo, X.Y., Pei, Y., Zhou, Z.Y.: [Expression of ferric chelate reductase gene in Citrus junos and Poncirus trifoliata tissues.] — Acta bot. sin. 44: 771–774, 2002. [In Chin.]

    CAS  Google Scholar 

  • Li, L., Fan, Y.H., Luo, X.Y., Zhou, Z.Y., Pei, Y.: [Study on ferric chelate reductase of Citrus junos and Poncirus trifoliata.] — J. southwest agr. Univ. 23: 435–437, 2001. [In Chin.]

    Google Scholar 

  • Li, L., Zhou, Z.Y., Pei, Y.: [Physiological reaction on resistance to iron chlorosis in Malus xiaojinensis and M. Rockii.] — Acta hort. sin. 30: 639–642, 2003. [In Chin.]

    CAS  Google Scholar 

  • Li, L.H., Cheng, X.D., Ling, H.Q.: Isolation and characterization of Fe(III)-chelate reductase gene LeFRO1 in tomato. — Plant mol. Biol. 54: 125–136, 2004.

    Article  PubMed  Google Scholar 

  • Li, Y.L., Qiu, Y.C., Dian, S.Y., Guo, C.H.: Overexpression of AtFRO6 in transgenic tobacco enhances ferric chelate reductase activity in leaves and increases tolerance to irondeficiency chlorosis. — Mol. Biol. Rep. 38: 3605–3613, 2011.

    Article  CAS  PubMed  Google Scholar 

  • Liu, T., Li, Y., Ren, J., Zhang, C., Kong, M., Song, X., Zhou, J., Hou, X.: Over-expression of BcFLC1 from non-heading Chinese cabbage enhances cold tolerance in Arabidopsis. — Biol. Plant. 57: 262–266, 2013.

    Article  CAS  Google Scholar 

  • Meng, X., Yin, B., Feng, H.L., Zhang, S., Liang, X.Q., Meng Q.W.: Overexpression of R2R3-MYB gene leads to accumulation of anthocyanin and enhanced resistance to chilling and oxidative stress. — Biol. Plant. 58: 121–130, 2014.

    Article  CAS  Google Scholar 

  • M’sehli, W., Youssfi, S., Donnini, S., Dell’Orto, M., Nisi, P.D., Zocchi, G., Abdelly, C., Gharsalli, M.: Root exudation and rhizosphere acidification by two lines of Medicago ciliaris in response to lime-induced iron deficiency. — Plant Soil. 312: 151–162, 2008.

    Article  Google Scholar 

  • Murashige, T., Skoog, F.: A revised medium for rapid growth and bio assays with tobacco tissue cultures. — Physiol. Plant. 15: 473–497, 1962.

    Article  CAS  Google Scholar 

  • Nikolic, M., Römheld, V.: Mechanism of Fe uptake by the leaf symplast: is Fe inactivation in leaf a cause of Fe deficiency chlorosis? — Plant Soil 215: 229–237, 1999.

    Article  CAS  Google Scholar 

  • Nikolic, M., Römheld, V.: Does high bicarbonate supply to roots change availability of iron in the leaf apoplast? — Plant Soil 241: 67–74, 2002.

    Article  CAS  Google Scholar 

  • Pal, A.K., Acharya, K., Vats, S.K., Kumar, S., Ahuja, P.S.: Over-expression of PaSOD in transgenic potato enhances photosynthetic performance under drought. — Biol. Plant. 57: 359–364, 2013.

    Article  CAS  Google Scholar 

  • Ren, L.X., Zuo, Y.M., Jiang, R.F., Zhang, F.S.: [Mechanisms of bicarbonate induced iron-deficiency chlorosis of peanut on calcareous soils.] — Acta ecol. sin. 25: 795–801, 2005. [In Chin.]

    CAS  Google Scholar 

  • Robinson, N.J., Procter, C.M., Connolly, E.L., Guerinot, M.L.: A ferric-chelate reductase for iron uptake from soils. — Nature 397: 694–697, 1999.

    Article  CAS  PubMed  Google Scholar 

  • Samuelsen, A.I., Martin, R.C., Mok, D.W.S., Mok, M.C.: Expression of the yeast FRE genes in transgenic tobacco. — Plant Physiol. 118: 51–58, 1998.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Susín, S., Abadía, A., González-Reyes, J.A., Lucena, J.J., Abadía, J.: The pH requirement for in vivo activity of the iron-deficiency-induced “Turbo” ferric chelate reductase: a comparison of the iron-deficiency-induced iron reductase activities of intact plants and isolated plasma membrane fractions in sugar beet. — Plant Physiol. 110: 111–123, 1996.

    PubMed Central  PubMed  Google Scholar 

  • Vasconcelos, M., Eckert, H., Arahana, V., Graef, G., Grusak, M.A., Clemente, T.: Molecular and phenotypic characterization of transgenic soybean expressing the Arabidopsis ferric chelate reductase gene, FRO2. — Planta 224: 1116–1128, 2006.

    Article  CAS  PubMed  Google Scholar 

  • Waters, B.M., Blevins, D.G., Eide, D.J.: Characterization of FRO1, a pea ferric-chelate reductase involved in root iron acquisition. — Plant Physiol. 129: 85–94, 2002.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yang, J., Liu, Y., Liu, Y., Zhang, W., Huang, J., Li, J., Du, C.C., Sui, Z., Wang-Pruski, G.: Characterization of chlorosis-resistant apple mutants of transgenic FRO2. — Acta Hort. 829: 251–257, 2009.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. C. Chen.

Additional information

Acknowledgements: We thank Prof. Xiaochun Zhao from the Citrus Research Institute of the Southwest University for reading critically the manuscript. This research was supported by the National High Technology Research and Development Program of China (Grant No. 2011AA100205)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peng, A.H., Liu, X.F., He, Y.R. et al. Characterization of transgenic Poncirus trifoliata overexpressing the ferric chelate reductase gene CjFRO2 from Citrus junos . Biol Plant 59, 654–660 (2015). https://doi.org/10.1007/s10535-015-0543-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10535-015-0543-9

Additional key words

Navigation