Skip to main content
Log in

Agrobacterium-mediated transformation of purple raspberry (Rubus occidentalis × R. idaeus) with the PtFIT (FER-like iron deficiency–induced transcription factor 1) gene

  • Biotechnology
  • Published:
In Vitro Cellular & Developmental Biology - Plant Aims and scope Submit manuscript

Abstract

An Agrobacterium-mediated transformation protocol for the purple raspberry (R. occidentalis × R. idaeus) ‘Amethyst’ was developed. Using the system, the FER-like iron deficiency–induced transcription factor 1 gene cloned from Populus tremula (PtFIT) was expressed in transgenic raspberry plants. Effects of four inoculum densities and two co-cultivation times on ‘Amethyst’ transformation were tested in two separate experiments. Results showed that an average transformation frequency of 3.9% was achieved under the conditions of 25 mg L−1 kanamycin selection, 3-d co-cultivation, and OD600 0.3 to 0.55 inoculum density. A total of 12 PtFIT-transgenic lines of ‘Amethyst’ were verified using polymerase chain reaction (PCR) analysis. Expression of the PtFIT gene in transgenic lines was evaluated under the iron deficiency or sufficiency condition using the real-time quantitative PCR (RT-PCR); however, the expression showed an inconsistent response to iron deficiency among different transgenic lines. An established transformation system could provide a research tool used to understand gene functions and trait development in raspberry; therefore, the present research will be beneficial to breeding and germplasm improvement of raspberry or other Rubus species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.
Figure 4.

Similar content being viewed by others

References

  • Ahuja MR (2009) Transgene stability and dispersal in forest trees. Trees 23:1125–1135

    Article  CAS  Google Scholar 

  • Aldwinckle H, Malnoy M (2009) Plant regeneration and transformation in the Rosaceae. Transgenic Plant J 3:1–39

    Google Scholar 

  • Bauer P, Ling HQ, Guerinot ML (2007) FIT, the FER-like iron deficiency induced transcription factor in Arabidopsis. Plant Physiol Biochem 45:260–261

    Article  CAS  Google Scholar 

  • Birch RG (1997) Plant transformation: problems and strategies for practical application. Annu Rev Plant Biol 48:297–326

    Article  CAS  Google Scholar 

  • Black B, Cardon G, Ransom C (2009) Iron chlorosis in berries. Utah State University Cooperative Extension, Logan, Utah, US

    Google Scholar 

  • Bourras S, Rouxel T, Meyer M (2015) Agrobacterium tumefaciens gene transfer: how a plant pathogen hacks the nuclei of plant and nonplant organisms. Phytopathology 105:1288–1301

    Article  CAS  Google Scholar 

  • Butaye KM, Cammue BP, Delauré L, De Bolle MF (2005) Approaches to minimize variation of transgene expression in plants. Mol Breed 16:79–91

    Article  Google Scholar 

  • Chen H, Nelson R, Sherwood J (1994) Enhanced recovery of transformants of Agrobacterium tumefaciens after freeze-thaw transformation and drug selection. Biotechniques 16(664–668):670

    Google Scholar 

  • Colangelo EP, Guerinot ML (2004) The essential basic helix-loop-helix protein FIT1 is required for the iron deficiency response. Plant Cell 16:3400–3412

    Article  CAS  Google Scholar 

  • Dai W, Magnusson VA, Hatterman-Valenti H, Carter JF (2006) Micropropagation of ‘Amethyst’ purple raspberry (Rubus occidentalis L. x R. idaeus L. ‘Amethyst’). J Environ Hort 24:35–38

    Google Scholar 

  • Eckhardt U, Marques AM, Buckhout TJ (2001) Two iron-regulated cation transporters from tomato complement metal uptake-deficient yeast mutants. Plant Mol Biol 45:437–448

    Article  CAS  Google Scholar 

  • Gotame TP, Culle DW, Graham J, Hedley PE, Smith K, Morris J, Andersen L, Petersen KK (2014) Effect of short-term exposure to high-temperature on total gene expression in the leaves of four raspberry (Rubus idaeus L.) cultivars. J Hortic Sci Biotech 89:532–541

    Article  Google Scholar 

  • Graham J, McNicol R, Kumar A (1990) Use of the GUS gene as a selectable marker for Agrobacterium-mediated transformation of Rubus. Plant Cell Tiss Org Cult 20:35–39

    Article  CAS  Google Scholar 

  • Hoagland DR, Arnon DI (1950) The water-culture method for growing plants without soil. Circular. California agricultural experiment station 347

  • Hoenicka H, Fladung M (2006) Genome instability in woody plants derived from genetic engineering. In: Fladung M, Ewald D (eds) Tree transgenesis: recent developments. Springer, Berlin Heidelberg, pp 301–321

    Chapter  Google Scholar 

  • Huang D (2015) Cloning and characterization of the iron-regulated transporter (IRT) genes and their transcription factors in Populus. Ph D Dissertation, North Dakota State University, Fargo, ND USA

  • Huang D, Dai W (2015) Molecular characterization of the basic helix-loop-helix (bHLH) genes that are differentially expressed and induced by iron deficiency in Populus. Plant Cell Rep 34:1211–1224

    Article  CAS  Google Scholar 

  • Ivanov R, Brumbarova T, Bauer P (2012) Fitting into the harsh reality: regulation of iron-deficiency responses in dicotyledonous plants. Mol Plant 5:27–42

    Article  CAS  Google Scholar 

  • Jennings DL (1988) Raspberries and blackberries: their breeding, diseases and growth. Academic Press, San Diego CA

    Google Scholar 

  • Jiang Q, Ma Y, Zhong C, Zeng B, Zhang Y, Pinyopusarerk K, Bogusz D, Franche C (2015) Optimization of the conditions for Casuarina cunninghamiana Miq. genetic transformation mediated by Agrobacterium tumefaciens. Plant Cell Tiss Org Cult 121:195–204

    Article  Google Scholar 

  • Jibran R, Dzierzon H, Bassil N, Bushakra JM, Edger PP, Sullivan S, Finn CE, Dossett M, Vining KJ, VanBuren R, Mockler TC, Liachko I, Davies KM, Foster TM, Chagne D (2018) Chromosome-scale scaffolding of the black raspberry (Rubus occidentalis L.) genome based on chromatin interaction data. Hort Res 5:8

    Article  Google Scholar 

  • Kim MJ, An DJ, Moon KB, Cho HS, Min SR, Sohn JH, Jeon JH, Kim HS (2016) Highly efficient plant regeneration and Agrobacterium-mediated transformation of Helianthus tuberosus L. Ind Crops Prod 83:670–679

    Article  CAS  Google Scholar 

  • Kokko HI, Kärenlampi SO (1988) Transformation of arctic bramble (Rubus arcticus L.) by Agrobacterium tumefaciens. Plant Cell Rep 17:822–826

    Article  Google Scholar 

  • Kovács G, Sági L, Jacon G, Arinaitwe G, Busogoro JP, Thiry E, Strosse H, Swennen R, Remy S (2013) Expression of a rice chitinase gene in transgenic banana (‘Gros Michel’, AAA genome group) confers resistance to black leaf streak disease. Transgenic Res 22:117–130

    Article  Google Scholar 

  • Legay S, Guignard C, Ziebel J, Evers D (2012) Iron uptake and homeostasis related genes in potato cultivated in vitro under iron deficiency and overload. Plant Physiol Biochem 60:180–189

    Article  CAS  Google Scholar 

  • Lenz RR, Magnusson VA, Dai W (2016) Plant regeneration of ‘Amethyst’ purple raspberry (Rubus occidentalis × R. idaeus ‘Amethyst’) from in vitro leaf tissues. Acta Hortic 1133:491–496

    Article  Google Scholar 

  • Li S, Cong Y, Liu WT, Shuai Q, Chen N, Gai J, Li Y (2017) Optimization of Agrobacterium-mediated transformation in soybean. Front Plant Sci 8:246

    PubMed  PubMed Central  Google Scholar 

  • Lin YF, Liang HM, Yang SY, Boch A, Clemens S, Chen CC, Wu JF, Huang JL, Yeh KC (2009) Arabidopsis IRT3 is a zinc-regulated and plasma membrane localized zinc/iron transporter. New Phytol 2182:392–404

    Article  Google Scholar 

  • Ling HQ, Bauer P, Bereczky Z, Keller B, Ganal M (2002) The tomato FER gene encoding a bHLH protein controls iron-uptake responses in roots. Proc Natl Acad Sci USA 99:13938–13943

    Article  CAS  Google Scholar 

  • Lloyd G, McCown B (1980) Commercially-feasible micropropagation of mountain laurel, Kalmia latifolia, by use of shoot-tip culture. Proc Intl Plant Prop Soc 30:421–427

    Google Scholar 

  • Mai HJ, Pateyron S, Bauer P (2016) Iron homeostasis in Arabidopsis thaliana: transcriptomic analyses reveal novel FIT-regulated genes, iron deficiency marker genes and functional gene networks. BMC Plant Biol 16:211

    Article  Google Scholar 

  • Mathews H, Wagoner W, Cohen C, Kellogg J, Bestwick R (1995) Efficient genetic transformation of red raspberry, Rubus idaeus L. Plant Cell Rep 14:471–476

    Article  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue culture. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Qu SC, Huang XD, Zhang Z, Yao QH, Tao JM, Qiao YS, Zhang JY (2005) Agrobacterium-mediated transformation of Malus robusta with tomato iron transporter gene. J Plant Physiol Mol Biol 31:235–240

    CAS  Google Scholar 

  • Tan S, Han R, Li P, Yang G, Li S, Zhang P, Wang WB, Zhao WZ, Yin LP (2015) Over-expression of the MixIRT1 gene increases iron and zinc content in rice seeds. Transgenic Res 24:109–122

    Article  CAS  Google Scholar 

  • Trigiano RN, Gray DJ (2011) Plant tissue culture, development, and biotechnology. CRC Press, Boca Raton FL

    Google Scholar 

  • VanBuren R, Bryant D, Bushakra JM, Vining KJ, Edger PP, Rowley ER, Priest HD, Michael TP, Lyons E, Filichkin SA, Dossett M, Finn CE, Bassil NV, Mockler TC (2016) The genome of black raspberry (Rubus occidentalis). Plant J 87:535–547

  • Vert G, Grotz N, Dedaladechamp F, Gaymard F, Guerinot ML, Briat JF, Curie C (2002) IRT1, an Arabidopsis transporter essential for iron uptake from soil and for plant growth. Plant Cell 14:1223–1233

    Article  CAS  Google Scholar 

  • Wang G, Castiglione S, Chen Y, Li L, Han Y, Tian Y, Gabriel DW, Han Y, Mang K, Sala F (1996) Poplar (Populus nigra L.) plants transformed with a Bacillus thuringiensis toxin gene: insecticidal activity and genomic analysis. Transgenic Res 5:289–301

    Article  CAS  Google Scholar 

  • Wu H, Chen C, Du J, Liu H, Cui Y, Zhang Y, He Y, Wang Y, Chu C, Feng Z, Li J, Ling HQ (2012) Co-overexpression FIT with AtbHLH38 or AtbHLH39 in Arabidopsis-enhanced cadmium tolerance via increased cadmium sequestration in roots and improved iron homeostasis of shoots. Plant Physiol 158:790–800

    Article  CAS  Google Scholar 

  • Yuan Y, Wu H, Wang N, Li J, Zhao W, Du J, Wang D, Ling HQ (2008) FIT interacts with AtbHLH38 and AtbHLH39 in regulating iron uptake gene expression for iron homeostasis in Arabidopsis. Cell Res 18:385–397

    Article  CAS  Google Scholar 

  • Zhang Z, Finer JJ (2016) Low Agrobacterium tumefaciens inoculum levels and a long co-culture period lead to reduced plant defense responses and increase transgenic shoot production of sunflower (Helianthus annuus L.). InVitro Cell Dev Biol - Plant 52:354–366

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenhao Dai.

Additional information

Editor: Baochun Li

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, C., Dai, W. Agrobacterium-mediated transformation of purple raspberry (Rubus occidentalis × R. idaeus) with the PtFIT (FER-like iron deficiency–induced transcription factor 1) gene. In Vitro Cell.Dev.Biol.-Plant 58, 343–350 (2022). https://doi.org/10.1007/s11627-021-10228-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11627-021-10228-7

Keywords

Navigation