Skip to main content
Log in

Progesterone moderates damage in Arabidopsis thaliana caused by infection with Pseudomonas syringae or P. fluorescens

  • Brief Communication
  • Published:
Biologia Plantarum

Abstract

Brassinosteroids are known to protect plants against various abiotic and biotic stresses, however, very limited information is available about the role of progesterone. Therefore the effects of Pseudomonas syringae pv. syringae (P.s.) wild type strain 61, its hrcC mutant, and the saprophytic P. fluorescens (P.f.) strain 55 were investigated in wild type Arabidopsis thaliana cv. Columbia and its rbohF knock-out mutant, with and without progesterone pre-treatment. The reactions of wild type and rbohF mutant Arabidopsis to bacterial inoculations were similar, although 2 h after injection of P.s. a larger increase of electrolyte leakage was measured in wild type than in rbohF knockout mutant leaves. The hrcC mutant caused weak necrotic symptoms and increased leakage in both types of Arabidopsis, although to a much lesser extent than P.s. The P.f. did not induce any visible symptom, but slightly increased the electrolyte leakage in both types of Arabidopsis. Inoculation by all Pseudomonas bacteria led to significant alterations in photosystem 2 efficiency as compared to control plants. Pre-treatment of leaves with progesterone diminished the necrotic symptoms, the electrolyte leakage and improve the efficiency of photosystem 2 caused by Pseudomonas bacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abbreviations

BRs:

brassinosteroids

Fv/Fm :

variable to maximum fluorescence ratio

hpi:

hours post inoculation

P.f. :

Pseudomonas fluorescens

P.s. :

Pseudomonas syringae pv. syringae

PS:

photosystem

References

  • Bajguz, A., Hayat, S.: Effects of brassinosteroids on the plant responses to environmental stresses. — Plant Physiol. Biochem. 47: 1–8, 2009.

    Article  PubMed  CAS  Google Scholar 

  • Barna, B., Ádám, A., Király, Z.: Juvenility and resistance of a superoxide-tolerant plant to diseases and other stresses. — Naturwissenschaften 80: 420–422, 1993.

    Article  Google Scholar 

  • Berger, S., Papadopoulos, M., Schreiber, U., Kaiser, W., Roitsch, T.: Complex regulation of gene expression, photosynthesis and sugar levels by pathogen infection in tomato. — Physiol. Plant. 122: 419–428, 2004.

    Article  CAS  Google Scholar 

  • Bhattacharya, B., Gupta, K.: Steroid hormone effects on growth and apical dominance of sunflower. — Phytochemistry 20: 989–991, 1981.

    Article  CAS  Google Scholar 

  • Bonfig, K.B., Schreiber, U., Gabler, A., Roitsch, T., Berger, S.: Infection with virulent and avirulent P. syringae strains differentially affects photosynthesis and sink metabolism in Arabidopsis leaves. — Planta 225: 112, 2006.

    Article  PubMed  CAS  Google Scholar 

  • Clouse, S.D., Sasse, J.M.: Brassinosteroids: essential regulators of plant growth and development. — Annu. Rev. Plant Physiol. Plant mol. Biol. 49: 427–451, 1998.

    Article  PubMed  CAS  Google Scholar 

  • Deng, W.L., Preston, G., Collmer, A., Chang, C.-J., Huang, H.- C.: Characterization of the hrpC and hrpRS operons of Pseudomonas syringae pathovars syringae, tomato, and glycinea and analysis of the ability of hrpF, hrpG, hrcC, hrpT, and hrpV mutants to elicit the hypersensitive response and disease in plants. — J. Bacteriol. 180: 4523–4531, 1998.

    PubMed  CAS  Google Scholar 

  • Dhaubhadel, S., Browning, K.S., Gallie, D.R., Krishna, P.: Brassinosteroid functions to protect the translational machinery and heat-shock protein synthesis following thermal stress. — Plant J. 29: 681–691, 2002.

    Article  PubMed  CAS  Google Scholar 

  • Doke, N.: Generation of superoxide anion by potato tuber protoplasts during the hypersensitive response to hyphal cell wall components of Phytophthora infestans and specific inhibition of the reaction by suppressors of hypersensitivity. — Physiol. Plant Pathol. 23: 359–367, 1983.

    Article  CAS  Google Scholar 

  • Erdal, S., Dumlupinar, R.: Mammalian sex hormones stimulate antioxidant system and enhance growth of chickpea plants. — Acta Physiol. Plant. 33: 1011–1017, 2011.

    Article  CAS  Google Scholar 

  • Freeman, B.C., Beattie, G.A.: Bacterial growth restriction during host resistance to Pseudomonas syringae is associated with leaf water loss and localized cessation of vascular activity in Arabidopsis thaliana. — Mol. Plant Microbe Interact. 22: 857–867, 2009.

    Article  PubMed  CAS  Google Scholar 

  • Gawienowski, A.M., Gibbs, C.C.: Identification of cholesterol and progesterone in apple seeds. — Steroids 12: 545–550, 1968.

    Article  PubMed  CAS  Google Scholar 

  • Iino, M., Nomura, N., Tamaki, Y., Yamada, Y., Yoneyama, K., Takeuchi, Y., Mori, M., Asami, T., Nakano, T., Yokota, T.: Progesterone: its occurrence in plants and involvement in plant growth. — Phytochemistry 68: 1664–1673, 2007.

    Article  PubMed  CAS  Google Scholar 

  • Janeczko, A.: The presence and activity of progesterone in the plant kingdom. — Steroids 77: 169–173, 2012.

    Article  PubMed  CAS  Google Scholar 

  • Janeczko, A., Budziszewska, B., Skoczowski, A., Dybała, M.: Specific binding sites for progesterone and 17β-estradiol in cells of Triticum aestivum L. — Acta Biochim. Pol. 55: 707–711, 2008.

    PubMed  CAS  Google Scholar 

  • Janeczko, A., Filek, W.: Stimulation of generative development in partly vernalized winter wheat by animal sex hormones. — Acta Physiol. Plant. 24: 291–295, 2002.

    Article  CAS  Google Scholar 

  • Janeczko, A., Filek, W., Biesaga-Kościelniak, J., Marcińska, I., Janeczko, Z.: The influence of animal sex hormones on the induction of flowering in Arabidopsis thaliana: comparison with the effect of 24-epibrassinolide. — Plant Cell Tissue Organ Cult. 72: 147–151, 2003.

    Article  CAS  Google Scholar 

  • Janeczko, A., Gullner, G., Skoczowski, A., Dubert, F., Barna, B.: Effects of brassinosteroid infiltration prior to cold treatment on ion leakage and pigment contents in rape leaves. — Biol. Plant. 51: 355–358, 2007a.

    Article  CAS  Google Scholar 

  • Janeczko, A., Kościelniak, J., Pilipowicz, M., Szarekłukaszewska, G., Skoczowski, A.: Protection of winter rape photosystem II by 24-epibrassinolide under cadmium stress. — Photosynthetica 43: 293–298, 2005.

    Article  CAS  Google Scholar 

  • Janeczko, A., Tóbias, I., Skoczowski, A., Dubert, F., Gullner, G., Barna, B.: Bacterial infection and pre-treatment with 24-epibrassinolide markedly affect the heat emission and membrane permeability of rape cotyledons. — Thermochim. Acta 458: 88–91, 2007b.

    Article  CAS  Google Scholar 

  • Joo, J.H., Wang, S., Chen, J.G., Jones, A.M., Fedoroff, N.V.: Different signaling and cell death roles of heterotrimeric G protein α and β subunits in the Arabidopsis oxidative stress response to ozone. — Plant Cell 17: 957–970, 2005.

    Article  PubMed  CAS  Google Scholar 

  • Kesy, J., Trzaskalska, A., Galoch, E., Kopcewitcz, J.: Inhibitory effect of brassinosteroids on the flowering of the short-day plant Pharbitis nil. — Biol. Plant. 47: 597–600, 2003.

    Article  CAS  Google Scholar 

  • Krishna, P.: Brassinosteroid-mediated stress responses. — J. Plant Growth Regul. 22: 289–297, 2003.

    Article  PubMed  CAS  Google Scholar 

  • Nakashita, H., Yasuda, M., Nitta, T., Asami, T., Fujioka, S., Arai, Y., Sekimata, K., Takasuto, S., Yamaguchi, I., Yoshida, S.: Brassinosteroid functions in a broad range of disease resistance in tobacco and rice. — Plant J. 33: 887–898, 2003.

    Article  PubMed  CAS  Google Scholar 

  • Pauli, G.F., Friesen, J.B., Gödecke, T., Farnsworth, N.R., Glodny, B.: Occurrence of progesterone and related animal steroids in two higher plants. — J. Natur. Prod. 73: 338–345, 2010.

    Article  CAS  Google Scholar 

  • Pogány, M., Von Rad, U., Grün, S., Dongó, A., Pintye, A., Simoneau, P., Bahnweg, G., Kiss, L., Barna, B., Dürner, J.: Dual roles of reactive oxygen species and NADPH oxidase RBOHD in an Arabidopsis-Alternaria pathosystem. — Plant Physiol. 151: 1459–1475, 2009.

    Article  PubMed  Google Scholar 

  • Simersky, R., Novak, O., Morris, D.A., Pouzar, V., Strnad, M.: Identification and quantification of several mammalian steroid hormones in plants by UPLC-MS/MS. — J. Plant Growth Reg. 28: 125–136, 2009.

    Article  CAS  Google Scholar 

  • Skoczowski, A., Janeczko, A., Gullner, G., Tóbias, I., Kornaś, A., Barna, B.: Response of brassinosteroid-treated oilseed rape cotyledons to infection with the wild type and HRmutant of Pseudomonas syringae or with P. fluorescens. — J. therm. Anal. Calorim. 104: 131–139, 2011.

    Article  CAS  Google Scholar 

  • Strasser, R.J., Srivatava, A., Tsimilli-Michael, M.: The fluorescens transient as a tool to characterize and screen photosynthetics samples. — In: Yunus, M., Pathre, U., Mohaty, P. (ed.): Probing Photosynthesis: Mechanism, Regulation and Adaptation. Pp. 445–483. Taylor and Francis, London 2000.

    Google Scholar 

  • Szatmári, Á., Ott, P.G., Varga, G.J., Besenyei, E., Czelleng, A., Klement, Z., Bozsó, Z.: Characterisation of basal resistance (BR) by expression patterns of newly isolated representative genes in tobacco. — Plant Cell Rep. 25: 728–740, 2006.

    Article  PubMed  Google Scholar 

  • Torres, M.A., Dangl, J.L., Jones, J.D.G.: Arabidopsis gp91phox homologues AtrbohD and AtrbohF are required for accumulation of reactive oxygen intermediates in the plant defense response. — Proc. nat. Acad. Sci. USA 99: 517–522, 2002.

    Article  PubMed  CAS  Google Scholar 

  • Vanitha, S.C., Umesha S.: P. fluorescens mediated systemic resistance in tomato is driven through an elevated synthesis of defense enzymes. — Biol. Plant. 55: 317–322, 2011

    Article  CAS  Google Scholar 

  • Wojtaszek, P.: Oxidative burst: an early plant response to pathogen infection. — Biochem J. 322: 681–692, 1997.

    PubMed  CAS  Google Scholar 

  • Ylstra, B., Touraev, A., Brinkmann, A.O., Heberle-Bors, E., Tunen, A.: Steroid hormones stimulate germination and tube growth of in vitro matured tobacco pollen. — Plant Physiol. 107: 639–643, 1995.

    PubMed  CAS  Google Scholar 

  • Yang, X.H., Xu, Z.H., Xue, H.W.: Arabidopsis membrane steroid binding protein 1 is involved in inhibition of cell elongation. — Plant Cell 17: 116–131, 2005.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, Z., Ramirez, J., Reboutier, D., Brault, M., Trouverie, J., Pennarun, A.M., Amiar, Z., Biligui, B., Galagovsky, L., Rona, J.P.: Brassinosteriods regulate plasma membrane anion channels in addition to proton pumps during expansion of Arabidopsis thaliana cells. — Plant Cell Physiol. 46: 1494–1504, 2005.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Barna.

Additional information

Acknowledgements: This research was supported by the joint research project No. 25 between the Polish and Hungarian Academy of Sciences and by the Hungarian National Research Fund OTKA K83615.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Janeczko, A., Tóbiás, I., Skoczowski, A. et al. Progesterone moderates damage in Arabidopsis thaliana caused by infection with Pseudomonas syringae or P. fluorescens . Biol Plant 57, 169–173 (2013). https://doi.org/10.1007/s10535-012-0142-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10535-012-0142-y

Additional key words

Navigation