Skip to main content
Log in

Physiological effects of exogenous nitric oxide on Brassica juncea seedlings under NaCl stress

  • Brief Communication
  • Published:
Biologia Plantarum

Abstract

The study was conducted to investigate the physiological effects of exogenous NO on potherb mustard (Brassica juncea Coss.) seedlings under salt stress. The plants were grown in Hogland nutrient solution for 15 d and treated with 150 mM NaCl, NO donor sodium nitropruside (SNP) and NO scavenger methylene blue (MB-1) for 4 d. The NaCl stress increased superoxide dismutase, peroxidase and ascorbate peroxidase activities and malondialdehyde (MDA) and free proline contents, and decreased soluble protein content. However, the application of exogenous NO limited the production of MDA and free proline, while markedly promoted SOD, POD and APX activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abbreviations

APX:

ascorbate peroxidase

MB-1:

methylene blue

MDA:

malondialdehyde

POD:

peroxidase

PTIO:

2-(4-carboxyphenyl-4,4,5,5-tetramethylimid-azoline-1-oxyl-3-oxide

SOD:

superoxide dismutase

SNS:

sodium nitropruside

References

  • Abat, J.K., Saigal, P., Deswal, R.: S-Nitrosylation — another biological switch like phosphorylation? — Physiol. mol. Biol. Plants 14: 119–130, 2008.

    Article  CAS  Google Scholar 

  • Aghaleh, M., Niknam, V., Ebrahimzadeh, H., Razavi K.: Salt stress effects on growth, pigments, proteins and lipid peroxidation in Salicornia persica and S. europaea. — Biol. Plant. 53: 243–248, 2009.

    Article  CAS  Google Scholar 

  • Allen, R.G., Tresini, M.: Oxidative stress and gene regulation. — Free. Radicals Biol. Med. 28: 463–499, 2000.

    Article  CAS  Google Scholar 

  • Amini, F., Ehsanpour, A.A., Hoang, Q.T., Shin, J.S.: Protein pattern changes in tomato under in vitro salt stress. — Russ. J. Plant. Physiol. 54: 464–471, 2007.

    Article  CAS  Google Scholar 

  • Arora, N., Bhardwaj, R., Sharma, P., Arora, H.K.: Effects of 28-homobrassinolide on growth, lipid peroxidation and antioxidative enzyme activities in seedlings of Zea mays L. under salinity stress. — Acta. Physiol. Plant. 30: 833–839, 2008.

    Article  CAS  Google Scholar 

  • Bailly, C., Benamar, A., Corbineau, F., Dôme, D.: Changes in malondialdehyde content and in superoxide dismutase, catalase and glutathione reductase activities in sunflower seed as related to deterioration during accelerated aging. — Physiol. Plant. 97: 104–110, 1996.

    Article  CAS  Google Scholar 

  • Banu, M.N.A., Hoque, M.A., Watanabe-Sugimoto, M., Matsuoka, K., Nakamura, Y., Shimoishi, Y.: Proline and glycinebetaine induce antioxidant defense gene expression and suppress cell death in cultured tobacco cells under salt stress. — Plant Physiol. 166: 146–156, 2009.

    Article  CAS  Google Scholar 

  • Bates, L.S., Waldren, R.P., Teare, I.D.: Rapid determination of free proline for water-stress studies. — Plant. Soil 39: 205–207, 1973.

    Article  CAS  Google Scholar 

  • Bayer, W.F., Fridovich, J.L.: Assaying for superoxide dismutase activity: some large consequences of minor changes in conditions. — Anal. Biochem. 161: 559–566, 1987.

    Article  Google Scholar 

  • Bradford, M.M.: A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. — Anal. Biochem. 72: 248–254, 1976.

    Article  PubMed  CAS  Google Scholar 

  • Garg, N., Singla, R.: Variability in the response of chickpea cultivars to short-term salinity, in terms of water retention capacity, membrane permeability, and osmo-protection. — Turk. J. Agr. Forest. 33: 57–63, 2009.

    CAS  Google Scholar 

  • Guo, B., Liang, Y., Zhu, Y.: Does salicylic acid regulate antioxidant defense system, cell death, cadmium uptake and partitioning to acquire cadmium tolerance in rice? — J. Plant. Physiol. 166: 20–31, 2009.

    Article  PubMed  CAS  Google Scholar 

  • Hasegawa, P.M., Bressan, R.A.: Plant cellular and molecular responses to high salinity. — Annu. Rev. Plant. Physiol. Plant. mol. Biol. 51: 463–499, 2000.

    Article  PubMed  CAS  Google Scholar 

  • Heath, R.L., Packer, L.: Photoperoxidation in isolated chloroplasts. I. Kinetics and stoichiometry of fatty acid peroxidation. — Arch. Biochem. Biophys. 125: 189–198, 1968.

    Article  PubMed  CAS  Google Scholar 

  • Hichem, H., Mounir, D., Naceur, E.A.: Differential responses of two maize (Zea mays.) varieties to salt stress: changes on polyphenols composition of foliage andoxidative damages. — Indian Crops Prod. 30: 1–8, 2009.

    Article  Google Scholar 

  • Hoque, M.A., Okuma, E., Banu, M.N.A., Nakamura, Y., Shimoishi, Y., Murata, Y.: Exogenous proline mitigates the detrimental effects of salt stress more than exogenous betaine by increasing antioxidant enzyme activities. — J. Plant Physiol. 164: 553–561, 2007.

    Article  PubMed  CAS  Google Scholar 

  • Islam, M.M., Hoque, M.A., Okuma, E., Banu, M.N.A., Shimoishi, Y., Nakamura, Y., Murata, Y.: Exogenous proline and glycinebetaine increase antioxidant enzyme activities and confer tolerance to cadmium stress in cultured tobacco cells. — J. Plant. Physiol. 166: 1–11, 2009.

    Article  Google Scholar 

  • Kabir, M.E., Karim, M.A., Azad, M.A.K.: Effect of potassium on salinity tolerance of mungbean (Vigna radiata L. Wilczek). — J. biol. Sci. 4: 103–110, 2004.

    Article  Google Scholar 

  • López-Carrión, A.I., Castellano, R., Rosales, M.A., Ruiz, J.M., Romero, L.: Role of nitric oxide under saline stress: implications on proline metabolism. — Biol. Plant. 52: 587–591, 2008.

    Article  Google Scholar 

  • Mutlu, S., Atici, Ö., Nalbantoglu, B.: Effects of salicylic acid and salinity on apoplastic antioxidant enzymes in two wheat cultivars differing in salt tolerance. — Biol. Plant. 53: 334–338, 2009.

    Article  CAS  Google Scholar 

  • Nandwal, A.S., Kumar, B., Sharma, S.K.: Nodule functioning in trifoliate and pentafoliate mungbean genotypes as influenced by salinity. — Biol. Plant. 43: 459–462, 2000.

    Article  CAS  Google Scholar 

  • Noriega, G.O., Yannarelli, G.G., Balestrasse, K.B., Batlle, A., Tomaro, M.L.: The effect of nitric oxide on heme oxygenase gene expression in soybean leaves. — Planta 226: 1155–1163, 2007.

    Article  PubMed  CAS  Google Scholar 

  • Pütter, J.: Peroxidases. — In: Bergmeyer, H.U. (ed.): Methods of Enzymatic Analysis. Pp. 685–690. Academic Press, New York 1974.

    Google Scholar 

  • Qian, H.F., Chen, W., Li, J.J., Wang, J., Zhou, Z., Liu, W. P., Fu, Z.W.: The effect of exogenous nitric oxide on alleviating herbicide damage in Chlorella vulgaris. — Aquat. Toxicol. 92: 250–257, 2009.

    Article  PubMed  CAS  Google Scholar 

  • Reddy, A.R., Chaitanya, K.V., Vivekanandan, M.: Drought- induced responses of photosynthesis and antioxidant metabolism in higher plants. — J. Plant. Physiol. 161: 1189–1202, 2004.

    Article  CAS  Google Scholar 

  • Ruan, H., Shen, W., Ye, M., Xu, L.: Protective effects of nitric oxide on salt stress-induced oxidative damage to wheat (Triticum aestivum) leaves. — Chin. Sci. Bull. 47: 677–681, 2002.

    Article  CAS  Google Scholar 

  • Sairam, R.K., Saxena, D.C.: Oxidative stress and antioxidants in wheat genotypes: possible mechanism of water stress tolerance. — J. Agron. Crop. Sci. 184: 55–61, 2002.

    Article  Google Scholar 

  • Sheokand, S., Kumari, A., Sawhney, V.: Effect of nitric oxide and putrescine on antioxidative responses under NaCl stress in chickpea plants. — Physiol. mol. Biol. Plants 14: 355–362, 2008.

    Article  CAS  Google Scholar 

  • Tian, X., Lei, Y.: Nitric oxide treatment alleviates drought stress in wheat seedlings. — Biol. Plant. 50: 775–778, 2006.

    Article  CAS  Google Scholar 

  • Whetherley, P.E.: Studies in water relations of cotton plants I. The field measurement of water deficit in leaves. — New Phytol. 49: 81–87, 1950.

    Article  Google Scholar 

  • Xie, Y.J., Lin, T.F., Han, Y., Liu, K., Zheng, Q., Huang, L., Yuan, X., He, Z., Hu, B., Fang, L., Shen, Z., Yang, Q., Shen, W.: Carbon monoxide enhances salt tolerance by nitric oxide-mediated maintenance of ion homeostasis and up-regulation of antioxidant defense in wheat seedling roots. — Plant Cell Environ. 31: 1864–1881, 2008.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, C.F., Hu, J., Lou, J., Zhang, Y., Hu, W.M.: Sand priming in relation to physiological changes in seed germination and seedling growth of waxy maize under high salt stress. — Seed. Sci. Technol. 35: 733–738, 2007.

    Google Scholar 

  • Zhang, L.G., Zhou, S., Xuan, Y., Sun, M., Zhao, L.Q.: Protective effect of nitric oxide against oxidative damage in Arabidopsis leaves under ultraviolet-B irradiation. — J. Plant. Biol. 52: 135–140, 2009.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of Hubei province (Grant No. 2008CDB087), Chinese National Basic Research and Development Program (2006CB101607), 863-Hi-techresearch and Development Program of China (2006AA10Z1E4).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. -L. Zeng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zeng, C.L., Liu, L., Wang, B.R. et al. Physiological effects of exogenous nitric oxide on Brassica juncea seedlings under NaCl stress. Biol Plant 55, 345–348 (2011). https://doi.org/10.1007/s10535-011-0051-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10535-011-0051-5

Additional key words

Navigation