Skip to main content
Log in

Combined drought and heat stress in wheat: changes in some heat shock proteins

  • Published:
Biologia Plantarum

Abstract

The influence of combined and individually applied drought and heat stress was studied in two wheat (Triticum aestivum L.) cultivars: resistant cv. Katya and susceptible cv. Sadovo. Relative water content decreased and electrolyte leakage increased due to individual and combined application of both stresses. Initial heat shock protein profile has been outlined via SDS electrophoresis of leaf extracts. The results obtained were confirmed by immunoblotting with anti-HSP70 monoclonal antibodies, anti-HSP110 polyclonal antibodies and anti-α β-crystalline polyclonal antibodies. The effect of simultaneously applied water stress and heat shock resembled the alterations in protein expression provoked only by water stress and differed significantly from the changes occurring after the individual application of heat stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

D:

drought stress

DH:

combined drought and heat stress

EDTA:

ethylendiaminetetracetic acid

H:

heat stress

HSP:

heat shock protein

PMSF:

phenylmethanesulfonyl fluoride

RLS and RSS:

Rubisco large and small subunits, respectively

SDS-PAGE:

sodium dodecyl sulfate polyacrylamide gel electrophoresis

References

  • Barrs, H.D., Weatherley, P.E.: A re-examination of the relative turgidity technique for estimating water deficit in leaves. — Aust. J. biol. Sci. 15: 413–428, 1962.

    Google Scholar 

  • Bradford, M.M.: A rapid and sensitive method for the quantification of microgram quantities of proteins using the principle of protein-dye binding. — Anal. Biochem. 72: 248–254, 1976.

    Article  CAS  PubMed  Google Scholar 

  • Caeiro, A.S., Ramos, P.C., Teixeira, A.R., Ferreira, R.B.: The ubiquitin/proteasome pathway from Lemna minor subjected to heat shock. — Biol. Plant. 52: 695–702, 2008.

    Article  CAS  Google Scholar 

  • Chaves, M.M., Oliveira, M.M.: Mechanisms underlying plant resilience to water deficits: prospects for water-saving agriculture. — J. exp. Bot. 55: 2365–2384, 2004.

    Article  CAS  PubMed  Google Scholar 

  • Demirevska, K., Simova-Stoilova, L., Vassileva, V., Feller, U.: Rubisco and some chaperone protein responses to water stress and rewatering at early seedling growth of drought sensitive and tolerant wheat varieties. — Plant Growth Regul. 56: 97–106, 2008.

    Article  CAS  Google Scholar 

  • Ferguson, B.: The plant response: stress in the daily environment. — J. Zhejiang Univ. Sci. 5: 129–132, 2004.

    Article  PubMed  Google Scholar 

  • Geneva, M., Zehirov, G., Djonova, E., Kaloyanova, N., Georgiev, G., Strancheva, I.: The effect of inoculation of pea plants with mycorrhizal fungi and Rhizobium on nitrogen and phosphorus assimilation. — Plant Soil Environ. 52: 435–440, 2006.

    CAS  Google Scholar 

  • Gulli, M., Corradi, M., Rampino, P., Marmiroli, N., Perrotta, C.: Four members of the HSP101 gene family are differently regulated in Triticum durum Desf. — FEBS Lett. 581: 4841–4849, 2007.

    Article  CAS  PubMed  Google Scholar 

  • Jiang, Y., Huang, B.: Protein alterations in tall fescue in response to drought stress and abscisic acid. — Crop Sci. 42: 202–207, 2002.

    Article  CAS  PubMed  Google Scholar 

  • Kalapos, T., Van den Boogaard, R., Lambers, H.: Effect of soil drying on growth, biomass allocation and leaf gas exchange of two annual grass species. — Plant Soil 185: 137–149, 1996.

    Article  CAS  Google Scholar 

  • Kotak, S., Larkindale, J., Lee, U., Pascal von Koskull-Doring, Vierling, E., Scharf, K.: Complexity of the heat stress response in plants. — Plant Biol. 10: 310–316, 2007.

    CAS  Google Scholar 

  • Kregel, K.: Heat shock proteins: modifying factors in physiological stress responses and acquired thermotolerance. — J. appl. Physiol. 92: 2177–2186, 2002.

    CAS  PubMed  Google Scholar 

  • Laemmli, U.K.: Cleavage of structural proteins during the assembly of the head of bacteriophage T4. — Nature 277: 680–685, 1970.

    Article  Google Scholar 

  • Lee, G., Vierling, E.: A small heat shock protein cooperates with heat shock protein 70 system to reactivate a heat-denaturated protein. — Plant Physiol. 122: 189–197, 2000.

    Article  CAS  PubMed  Google Scholar 

  • Lee, U., Wie, C., Escobar, M., Williams, B., Hong, S., Vierling, E.: Genetic analysis reveals domain interactions of Arabidopsis HSP100/ClpB and cooperation with the small heat shock protein chaperone system. — Plant Cell 17: 559–571, 2005.

    Article  CAS  PubMed  Google Scholar 

  • Lin, Q., Wang, Y.M., Nose, A., Hong, H.T.K., Agarie, S.: Effect of high night temperature on lipid and protein compositions in tonoplasts isolated from Ananas comosus and Kalanchoë pinnata leaves. — Biol. Plant. 52: 59–65, 2008.

    Article  CAS  Google Scholar 

  • Mansfield, M., Key, J.: Synthesis of the low molecular weight heat shock proteins in plants. — Plant Physiol. 84: 1007–1017, 1987.

    Article  CAS  PubMed  Google Scholar 

  • Mayer, M., Bukau, B.: Hsp70 chaperones: cellular functions and molecular mechanism. — Cell Mol. Life Sci. 62: 670–684, 2005.

    Article  CAS  PubMed  Google Scholar 

  • Miernyk, J.A.: Protein folding in the plant cell. — Plant Physiol. 121: 695–703, 1999.

    Article  CAS  PubMed  Google Scholar 

  • Mitsuhashi, W., Feller, U.: Effects of light and external solutes on the catabolism of nuclear-encoded stromal proteins in intact chloroplasts isolated from pea leaves. — Plant Physiol. 100: 2100–2105, 1992.

    Article  CAS  PubMed  Google Scholar 

  • Mittler, R.: Abiotic stress, the field environment and stress combination. — Trends Plant Sci. 11: 15–19, 2006.

    Article  CAS  PubMed  Google Scholar 

  • Mittler, R., Merquiol, E., Hallak-Herr, E., Rachmilevitch, S., Kaplan, A., Cohen, M.: Living under a ‘dormant’ canopy: a molecular acclimation mechanism of the desert plant Retama raetam. — Plant J. 25: 407–416, 2001.

    Article  CAS  PubMed  Google Scholar 

  • Moffat, A.S.: Finding new ways to protect drought-stricken plants. — Science 296: 1226–1229, 2002.

    Article  CAS  PubMed  Google Scholar 

  • Nunes, M.E.S., Smith, G.R.: Electrolyte leakage assay capable of quantifying freezing resistance in rose clover. — Crop Sci. 43: 1349–1357, 2003.

    Article  Google Scholar 

  • Oh, H., Easton, D., Murawski, M., Kaneko, Y., Subjeck, J.: The chaperoning activity of HSP110. — J. biol. Chem. 274: 15712–15718, 1999.

    Article  CAS  PubMed  Google Scholar 

  • Queitsch, C., Hong, S., Vierling, E., Lindquist, S.: Heat shock protein 101 plays a crucial role in thermotolerance in Arabidopsis. — Plant Cell 12: 479–492, 2000.

    Article  CAS  PubMed  Google Scholar 

  • Rizhsky, L., Liang, H., Mittler, R.: The combined effect of drought stress and heat shock on gene expression in tobacco. — Plant Physiol. 130: 1143–1151, 2002.

    Article  CAS  PubMed  Google Scholar 

  • Rizhsky, L., Liang, H., Shuman, J., Shulaev, V., Davletova, S., Mittler, R.: When defense pathways collide. The response of Arabidopsis to a combination of drought and heat stress. — Plant Physiol. 134: 1683–1696, 2004.

    Article  CAS  PubMed  Google Scholar 

  • Ritossa, F.: A new puffing pattern induced by temperature shock and DNP in Drosophila. — Experientia 18: 571–573, 1962.

    Article  CAS  Google Scholar 

  • Santhoshkumar, P., Sharma, K.: Conserved F84 and P86 residues in αβ-crystallin are essential to effectively prevent the aggregation of substrate proteins. — Prot. Sci. 15: 2488–2498, 2006.

    Article  CAS  Google Scholar 

  • Santos, M.G., Ribeiro, R.V., Machado, E.C., Pimentel, C.: Photosynthetic parameters and leaf water potential of five common bean genotypes under mild water deficit. — Biol. Plant. 53: 229–236, 2009.

    Article  CAS  Google Scholar 

  • Schoffl, F., Prandl, R., Reindl, A.: Regulation of the heat-shock response. — Plant Physiol. 117: 1135–1141, 1998.

    Article  CAS  PubMed  Google Scholar 

  • Simova-Stoilova, L., Vassileva, V., Demirevska, K., Feller, U.: Proteolytic activity in wheat leaves during drought stress and recovery. — Gen. Appl. Plant Physiol. 31(Spec. Issue): 91–100, 2006.

    Google Scholar 

  • Smykal, P., Masin, J., Hardy, I., Konopasek, I., Zarsky, V.: Chaperone activity of tobacco HSP18, a small heat-shock protein, is inhibited by ATP. — Plant J. 23: 703–713, 2000.

    Article  CAS  PubMed  Google Scholar 

  • Sumesh, K.V., Sharma-Natu, P., Ghildiyal, M.C.: Starch synthase activity and heat shock protein in relation to thermal tolerance of developing wheat grains. — Biol. Plant. 52: 749–753, 2008.

    Article  CAS  Google Scholar 

  • Vierling, E.: The roles of heat shock proteins in plants. — Annu. Rev. Plant Physiol. Plant mol. Biol. 42: 579–620, 1991.

    Article  CAS  Google Scholar 

  • Wang, W., Vinocur, B., Shoseyov, O., Altman, A.: Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response. — Trends Plant Sci. 9: 244–252, 2004.

    Article  CAS  PubMed  Google Scholar 

  • Waters, E., Lee, G., Vierling, E.: Evolution, structure and function of the small heat shock proteins in plants. — J. exp. Bot. 47: 325–338, 1996.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported financially by the SCOPES program of the Swiss National Science Foundation (project DILPA-JRP-IB73AO-111142/1) and the Ministry of Education and Science of the Republic of Bulgaria (Contract No. CC1503). The authors are grateful to Dr. V. Vassileva for her assistance in the conductivity measurement analyses. They would also like to acknowledge the efforts of Dr. M. Stamenova who provided the α β-crystalline antibody. Thanks are extended to Mrs. B. Juperlieva- Mateeva, A. Kostadinova and I. Anders for their technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Grigorova.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grigorova, B., Vaseva, I., Demirevska, K. et al. Combined drought and heat stress in wheat: changes in some heat shock proteins. Biol Plant 55, 105–111 (2011). https://doi.org/10.1007/s10535-011-0014-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10535-011-0014-x

Additional key words

Navigation