Skip to main content
Log in

Further biological characteristics of galactoglucomannan oligosaccharides

  • Published:
Biologia Plantarum

Abstract

The biological activity of cell wall-derived galactoglucomannan oligosaccharides (GGMOs) was dependent on their chemical structure. Galactosyl side chains linked to the glucomanno-core influenced their inhibition of elongation growth of pea (Pisum sativum L. cv. Tyrkys) stem segments induced by 2,4-dichlorophenoxyacetic acid (2,4-D). Reduction of the number of galactosyl side chains in GGMOs caused stimulation of the endogenous growth. Modification on the glucomanno-reducing end did not affect significantly the activity of these oligosaccharides. GGMOs inhibited also the elongation induced by indole-3-acetic acid (IAA) and gibberellic acid (GA3). In the presence of IAA the elongation growth was inhibited to 20 – 35 % after 24 h of incubation depending on GGMOs concentrations (1 μM, 10 nM, 0.1 nM), similarly as in the presence of 2,4-D, which confirms the hypothesis of GGMOs antiauxin properties. The elongation induced by GA3 was inhibited to 25 – 60 %, however, the time course of inhibition was different compared with IAA and 2,4-D. The highest inhibition was determined already after 6 h of incubation with a significant decrease after this time. The results indicated a competition between GGMOs and growth regulators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

2,4-D:

2,4-dichlorophenoxyacetic acid

GGM:

galactoglucomannan

GGMOs:

galactoglucomannan oligosaccharides

GA3 :

gibberellic acid

IAA:

indole-3-acetic acid

References

  • Akiyama, Y., Eda, S., Hori, M., Kato, K.: A galactoglucomannan from extracellular polysaccharides of suspension-cultured cells of Nicotiana tabacum.-Phytochemistry 22: 1177–1180, 1983.

    Article  CAS  Google Scholar 

  • Altamura, M.M., Zaghi, D., Salvi, G., De Lorenzo, G., Bellincampi, D.: Oligogacturonides stimulate pericycle cell wall thickening and cell divisions leading to stoma formation in tobacco leaf explants.-Planta 204: 429–436, 1998.

    Article  CAS  Google Scholar 

  • Ariens, E.J., Simonis A.M., Van Rossum, J.M.: Drug-receptor interaction: Interaction of one or more drugs with one receptor system.-In: Ariens, E.J. (ed.): Molecular Pharmacology. Pp. 119–286. Academic Press, New York 1964a.

    Google Scholar 

  • Ariens, E.J., Simonis A.M., Van Rossum, J.M.: Drug-receptor interaction: Interaction of one or more drugs with different receptor systems.-In: Ariens, E.J. (ed.): Molecular Pharmacology. Pp. 287–393. Academic Press, New York 1964b.

    Google Scholar 

  • Auxtova, O., Liskova, D., Kakoniova, D., Kubackova, M., Karacsonyi, S., Bilisics, L.: Effect of galactoglucomannan-derived oligosaccharides on elongation growth of pea and spruce stem segments stimulated by auxin.-Planta 196: 420–424, 1995.

    CAS  Google Scholar 

  • Auxtova-Samajova, O., Liskova, D., Kakoniova, D., Kubackova, M., Karacsonyi, S., Bilisics, L.: Inhibition of auxin stimulated short-term elongation growth of pea stem segments by galactoglucomannan-derived oligosaccharides.-J. Plant Physiol. 147: 611–613, 1996.

    CAS  Google Scholar 

  • Barratt, N.M., Davies, P.J.: Developmental changes in the gibberellin-induced growth response in stem segments of light-grown pea genotypes.-Plant Growth Regul. 21: 127–134, 1997.

    Article  CAS  Google Scholar 

  • Baureithel, K., Felix, G., Boller, T.: Specific, high affinity binding of chitin fragments to tomato cells and membranes. Competitive inhibition of binding by derivatives of chitin fragments and a nod factor of Rhizobium.-J. biol. Chem. 269: 17931–17938, 1994.

    PubMed  CAS  Google Scholar 

  • Bellincampi, D., Salvi, G., De Lorenzo, G., Cervone, F., Marfa, V., Eberhard, S., Darvill, A.G., Albersheim, P.: Oligogacturonides inhibit the formation of roots on tobacco explants.-Plant J. 4: 207–213, 1993.

    Article  CAS  Google Scholar 

  • Bilisics, L., Kubackova, M.: Biosynthesis of water-soluble metabolites of UDP-D-galactose containing D-galactose by an enzymic preparation isolated from tissue culture of poplar (Populus alba L., var. pyramidalis).-Collect. Czech. Chem. Commun. 54: 819–833, 1989.

    Article  CAS  Google Scholar 

  • Bilisics, L., Vojtassak, J., Capek, P., Kollarova, K., Liskova, D.: Changes in glycosidase activities during galactoglucomannan oligosaccharide inhibition of auxin induced growth.-Phytochemistry 65: 1903–1909, 2004.

    Article  PubMed  CAS  Google Scholar 

  • Branca, C., De Lorenzo, G., Cervone, F.: Competitive inhibition of the auxin-induced elongation by α-D-oligogalacturonides in pea stem segments.-Physiol. Plant. 72: 499–504, 1988.

    CAS  Google Scholar 

  • Capek, P., Kubackova, M., Alfoldi, J., Bilisics, L., Liskova, D., Kakoniova, D.: Galactoglucomannan from the secondary cell wall of Picea abies L. Karst.-Carbohydr. Res. 329: 635–645, 2000.

    Article  PubMed  CAS  Google Scholar 

  • Cheong, J.J., Birberg, W., Fugedi, P., Pilotti, A., Garegg, P.J., Hong, N., Ogawa, T., Hahn, M.G.: Structure-activity relationships of oligo-β-glucoside elicitors of phytoalexin accumulation in soybean.-Plant Cell 3: 127–136, 1991.

    PubMed  CAS  Google Scholar 

  • Dey, P.M.: D-Galactoglucomannans.-Adv. Carbohydr. Chem. Biochem. 37: 337–339, 1980.

    Article  Google Scholar 

  • Dubois, M., Gilles, K.A., Hamilton, K.J., Rebers, P.A., Smith, F.: Colorimetric method for determination of sugars and related substances.-Anal. Chem. 28: 350–356, 1956.

    Article  CAS  Google Scholar 

  • Dunand, C., Gautier, C., Chambat, G., Lienart, Y.: Characterization of the binding of α-L-Fuc (1→2)-β-D-Gal (1→) a xyloglucan signal, in blackberry protoplasts.-Plant Sci. 151: 183–192, 2000.

    Article  PubMed  CAS  Google Scholar 

  • Esquerre-Tugaye, M.T., Boudart, G., Dumas, B.: Cell wall degrading enzymes, proteins, and oligosaccharides participate in the molecular dialogue between plants and pathogens.-Plant Physiol. Biochem. 38: 157–163, 2000.

    CAS  Google Scholar 

  • Fry, S.C.: Structure and functions of xyloglucan.-J. exp. Bot. 40: 1–11, 1989.

    CAS  Google Scholar 

  • Fry, S.C., Aldington, S., Hetherington, P.R., Aitken, J.: Oligosaccharides as signals and substrates in the plant cell wall.-Plant Physiol. 103: 1–5, 1993.

    Article  PubMed  CAS  Google Scholar 

  • Hoson, T., Masuda, Y.: Effect of xyloglucan nonasaccharide on cell elongation induced by 2,4-dichlorophenoxyacetic acid and indole-3-acetic acid.-Plant Cell Physiol. 32: 777–782, 1991.

    CAS  Google Scholar 

  • John, M., Rohrig, H., Schmidt, J., Walden, R., Schell, J. Cell signalling by oligosaccharides.-Trends Plant Sci 2: 111–115, 1997.

    Article  Google Scholar 

  • Kaku, T., Tabuchi, A., Wakabayashi, K., Hoson, T.: Xyloglucan oligosaccharides cause cell wall loosening by enhancing xyloglucan endotransglucosylase/hydrolase activity in azuki bean epicotyls.-Plant Cell Physiol. 45: 77–82, 2004.

    Article  PubMed  CAS  Google Scholar 

  • Kato-Noguchi, H., Tanaka, Y.: Effects of capsaicin on plant growth.-Biol. Plant. 47: 157–159, 2003/2004.

    CAS  Google Scholar 

  • Kumaravelu, G., Livingstone, V.D., Ramanujam, P.M.: Triacontanol-induced changes in the growth, photosynthetic pigments, cell metabolites, flowering and yield of green gram.-Biol. Plant. 43: 287–290, 2000.

    Article  CAS  Google Scholar 

  • Liskova, D., Auxtova, O., Kakoniova, D., Kubackova, M., Karacsonyi, S., Bilisics, L.: Biological activity of galactoglucomannan-derived oligosaccharides.-Planta 196: 425–429, 1995.

    Article  CAS  Google Scholar 

  • Lorences, E.P., McDougall, G.J., Fry, S.C.: Xyloglucan-and cello-oligosaccharides, antagonists of the growth-promoting effect of H+.-Physiol. Plant. 80: 109–113, 1990.

    Article  CAS  Google Scholar 

  • McDougall, G.J., Fry, S.C.: Inhibition of auxin-stimulated growth of pea stem segments by a specific nonasaccharide of xyloglucan.-Planta 175: 412–416, 1988.

    Article  CAS  Google Scholar 

  • McDougall, G.J., Fry, S.C.: Structure-activity relationships for xyloglucan oligosaccharides with antiauxin activity.-Plant Physiol. 89: 883–887, 1989.

    CAS  PubMed  Google Scholar 

  • Priem, B., Morvan, H., Hafez, A.M.A., Morvan, C.: Influence of plant glycan of the oligomannoside type on the growth of flax plantlets.-Comp. rend. Acad. Sci. Paris III 311: 411–416, 1990.

    CAS  Google Scholar 

  • Schroder, R., Wegrzyn, T.F., Bolitho, K.M., Redgwell, R.J.: Mannan transglycosylase: a novel enzyme activity in cell walls of higher plants.-Planta 219: 590–600, 2004.

    PubMed  Google Scholar 

  • Shibuya, N., Kaku, H., Kuchitsu, K., Maliarik, M.J.: Identification of a novel high-affinity binding site for N-acetylchitooligosaccharide elicitor in the membrane fraction from suspension-cultured rice cells.-FEBS Lett. 329: 75–78, 1993.

    Article  PubMed  CAS  Google Scholar 

  • Slovakova, L., Liskova, D., Capek, P., Kubackova, M., Kakoniova, D., Karacsonyi, S.: Defence responses against TNV infection induced by galactoglucomannan-derived oligosaccharides in cucumber cells.-Eur. J. Plant Pathol. 106: 543–553, 2000.

    CAS  Google Scholar 

  • Spiro, M.D., Ridley, B.L., Eberhard, S., Kates, K.A., Mathieu, Y., O'Neill, M.A., Mohnen, D., Guern, J., Darvill, A., Albersheim, P.: Biological activity of reducing-end-derivatized oligogalacturonides in tobacco tissue cultures.-Plant Physiol. 116: 1289–1298, 1998.

    Article  PubMed  CAS  Google Scholar 

  • Taiz, L., Zeiger, E. (ed.): Plant Physiology.-The Benjamin/Cummings Publishing Company, Redwood City 1991.

    Google Scholar 

  • Takeda, T., Furuta, Y., Awano, T., Mizuno, K., Mitsuishi, Y., Hayashi, T.: Suppression and acceleration of cell elongation by integration of xyloglucans in pea stem segments.-Proc. nat. Acad. Sci. USA 99: 9055–9060, 2002.

    PubMed  CAS  Google Scholar 

  • Terzi, I., Kocacaliskan, I., Benlioglu, O., Solak, K.: Effects of juglone on growth of muskmelon seedlings with respect to physiological and anatomical parameters.-Biol. Plant. 47: 317–319, 2003/4.

    CAS  Google Scholar 

  • Warneck, H.M.: Biologische Aktivitat eines aus der Zellwand der Karotte isolierten Xyloglucan-Nonasaccharids. Mogliche Mechanismen der Regulation des Streckungswachstums.-Ph.D. Thesis, University of Tubingen, Tubingen, 1994.

    Google Scholar 

  • Warneck, H.M., Seitz, H.U.: Inhibition of gibberellic acid-induced elongation-growth of pea epicotyls by xyloglucan oligosaccharides.-J. exp. Bot. 44: 1105–1109, 1993.

    CAS  Google Scholar 

  • York, W.S., Darvill, A.G., Albersheim, P.: Inhibition of 2,4-dichlorophenoxyacetic acid-stimulated elongation of pea stem segments by a xyloglucan oligosaccharide.-Plant Physiol. 75: 295–297, 1984.

    Article  CAS  PubMed  Google Scholar 

  • Zablackis, E., York, W.S., Pauly, M., Hantus, S., Reiter, W.D., Chapple, C.C.S., Albersheim, P., Darvill, A.: Substitution of L-fucose by L-galactose in cell walls of Arabidopsis mur1.-Science 272: 1808–1810, 1996.

    PubMed  CAS  Google Scholar 

  • Zabotina, O.A., Guryanov, O.P., Malikhov, R.G., Ayupova, D.A., Beldman, G., Voragen, A.J.G., Lozovaya, V.V.: The isolation and biological activity of oligosaccharins from the pea shoots.-Russ. J. Plant Physiol. 42: 366–371, 1995.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Kollarova.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kollarova, K., Liskova, D. & Capek, P. Further biological characteristics of galactoglucomannan oligosaccharides. Biol Plant 50, 232–238 (2006). https://doi.org/10.1007/s10535-006-0012-6

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10535-006-0012-6

Additional key words

Navigation