Skip to main content
Log in

Plant oligosaccharides — outsiders among elicitors?

  • Review
  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

This review substantiates the need to study the plant oligoglycome. The available information on oligosaccharins - physiologically active fragments of plant cell wall polysaccharides - is summarized. The diversity of such compounds in chemical composition, origin, and proved biological activity is highlighted. At the same time, plant oligosaccharides can be considered as outsiders among elicitors of various natures in research intensity of recent decades. This review discusses the reasons for such attitude towards these regulators, which are largely connected with difficulties in isolation and identification. Together with that, approaches are suggested whose potentials can be used to study oligosaccharins. The topics of oligosaccharide metabolism in plants, including the ways of formation, transport, and inactivation are presented, together with data on biological activity and interaction with plant hormones. The current viewpoints on the mode of oligosaccharin action — perception, signal transduction, and possible “targets” — are considered. The potential uses of such compounds in medicine, food industry, agriculture, and biotechnology are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ABA:

abscisic acid

lAA:

indole-3-acetic acid (auxin)

References

  1. Bishop, P. D., Makus, D. J., Pearce, G., and Ryan, C. (1981) Proteinase inhibitor inducing factor activity in tomato leaves resides in oligosaccharides enzymically released from cell walls, Proc. Nat. Acad. Sci. USA, 78, 3536–3540.

    CAS  PubMed Central  PubMed  Google Scholar 

  2. Hahn, M. G., Darvill, A. G., and Albersheim, P. (1981) Host—pathogen interactions. XIX. The endogenous elicitor, a fragment of a plant cell wall polysaccharide that elicits phytoalexin accumulation in soybeans, Plant Physiol., 68, 1161–1169.

    CAS  PubMed Central  PubMed  Google Scholar 

  3. Nothnagel, E. A., McNeil, M., Ahbersheim, P., and Dell, A. (1983) Host—pathogen interactions. XXII. A galacturonic acid oligosaccharide from plant cell walls elicits phytoalexins, Plant Physiol., 71, 916–926.

    CAS  PubMed Central  PubMed  Google Scholar 

  4. Jin, D. F., and West, C. A. (1984) Characteristics of galacturonic acid oligomers as elicitors of casbene synthetase activity in castor bean seedlings, Plant Physiol., 74, 989–992.

    CAS  PubMed Central  PubMed  Google Scholar 

  5. Tran Than Van, K., Toubart, P., and Cousson, A. (1985) Manipulation of the morphogenetic pathways of tobacco explants by oligosaccharins, Nature, 314, 615–617.

    Google Scholar 

  6. Darvill, A., Augur, C., Bergmann, C., Carlson, R. W., Cheong, J. J., Eberhard, S., Hahn, M. G., Lo, V. M., Marfa, V., and Meyer, B. (1992) Oligosaccharins — oligosaccharides that regulate growth, development and defense responses in plants, Glycobiology, 2, 181–198.

    CAS  PubMed  Google Scholar 

  7. Aldington, S., and Fry, S. C. (1993) Oligosaccharins, Adv. Bot. Res., 19, 1–101.

    CAS  Google Scholar 

  8. Albersheim, P., Darvill, A. G., McNeil, M., Valent, B. S., Sharp, J. K., Nothnagel, E. A., Davis, K. R., Yamazaki, N., Gollin, D. J., York, S., Dudman, F., Darvill, J. E., and Dell, A. (1983) Oligosaccharins: naturally occurring carbohydrates with biological regulatory functions, in Structure and Function of Plant Genomes (Ciferri, O., and Dure, L., eds.) Plenum Publishing Corp., N.Y., pp. 293–312.

    Google Scholar 

  9. York, W. S., Darvill, A. G., and Albersheim, P. (1984) Inhibition of 2,4-dichlorophenoxyacetic acid-stimulated elongation of pea stem segments by a xyloglucan oligosaccharide, Plant Physiol., 75, 295–297.

    CAS  PubMed Central  PubMed  Google Scholar 

  10. Ishii, T, and Saka, H. (1992) Inhibition of auxin-stimulated elongation of cells in rice lamina joints by a feruloylated arabinoxylan trisaccharide, Plant Cell Physiol., 33, 321–324.

    CAS  Google Scholar 

  11. Liskova, O., Auxtova, O., Kakoniova, D., Kubackova, M., Karacsonyi, S., and Bilisics, L. (1995) Biological activity of galactoglucomannan-derived oligosaccharides, Planta, 196, 425–429.

    CAS  Google Scholar 

  12. Lorences, E. P., McDougall, G. J., and Fry, S. C. (1990) Xyloglucan- and cello-oligosaccharides: antogonists of the growth-promoting effect of H+, Physiol. Plant., 80, 109–113.

    CAS  Google Scholar 

  13. Dinand, E., Excoffier, G., Lienart, Y, and Vignon, M. R. (1997) Two rhamnogalacturonide tetrasaccharides isolated from semi-retted flax fibers are signaling molecules in Rubus fruticosus L. cells, Plant Physiol., 115, 793–801.

    CAS  PubMed Central  PubMed  Google Scholar 

  14. Boudart, G., Dechamp-Guillaume, G., Lafitte, C., Ricart, G., Barthe, J.-P., Mazau, D., and Esquerre-Tugaye, M-T (1995) Elicitors and suppressors of hydroxyproline-rich glycoprotein accumulation are solubilized from plant cell walls by endopolygalacturonase, Biochem. J., 232, 449–457.

    CAS  Google Scholar 

  15. Marfa, V., Gollin, D. J., Eberhard, S., Mohnen, D., Danill, A., and Albersheim, P. (1991) Oligogalacturonides are able to induce flowers to form on tobacco explants, Plant J., 1, 217–225.

    Google Scholar 

  16. Albersheim, P., and Darvill, A. G. (1985) Oligosaccharins, Sci. Am., 253, 58–64.

    Google Scholar 

  17. Ryan, C. A. (1987) Oligosaccharide signaling in plants, Annu. Rev. Cell Biol., 3, 295–317.

    CAS  PubMed  Google Scholar 

  18. Usov, A. I. (1993) Oligosaccharins — a new class of signaling molecules in plants, Russ. Chem. Rev., 62, 1047–1071.

    Google Scholar 

  19. Ozeretskovskaya, O. L., and Romenskaya, I. G. (1996) Oligosaccharins as regulatory molecules of plants, Russ. J. Plant Physiol., 43, 648–655.

    CAS  Google Scholar 

  20. Ridley, B. L., O’Neill, M. A., and Mohnen, D. (2001) Pectins: structure, biosynthesis, and oligogalacturoniderelated signaling, Phytochemistry, 57, 929–967.

    CAS  PubMed  Google Scholar 

  21. Gorshkova, T. A. (2007) Plant Cell Wall as a Dynamic System [in Russian], Nauka, Moscow.

  22. Davis, K. R., and Hahlbrock, K. (1987) Induction of plant defense responses in cultured parsley cells by plant cell wall fragments, Plant Physiol., 85, 1286–1290.

    Google Scholar 

  23. Bellincampi, D., Salvi, G., De Lorenzo, G., Cervone, F., Marfa, V., Eberhard, S., Darvill, A., and Albersheim, P. (1993) Oligogalacturonides inhibit the formation of roots on tobacco explants, Plant J., 4, 207–213.

    CAS  Google Scholar 

  24. Legendre, L., Yueh, Y G., Crain, R., Haddock, N., Heinsteinll, P. F., and Low, P. S. (1993) Phospholipase C activation during elicitation of the oxidative burst in cultured plant cells, J. Biol. Chem., 268, 24559–24563.

    CAS  PubMed  Google Scholar 

  25. Altamura, M. M., Zaghi, D., Salvi, G., De Lorenzo, G., and Bellincampi, D. (1998) Oligogalacturonides stimulate pericycle cell wall thickening and cell divisions leading to stoma formation in tobacco leaf explants, Planta, 204, 429–436.

    CAS  Google Scholar 

  26. Bruce, R., and West, C. (1989) Elicitation of lignin biosynthesis and isoperoxidase activity by pectic fragments in suspension cultures of castor beans, Plant Physiol., 91, 889897.

    Google Scholar 

  27. Tong, C., Labavitch, J., and Yang, S. (1986) The induction of ethylene production from pear cell culture by cell wall fragments, Plant Physiol., 81, 929–930.

    CAS  PubMed Central  PubMed  Google Scholar 

  28. Simpson, S. D., Ashford, D. A., Harvey, D. J., and Bowles, D. J. (1998) Short chain oligogalacturonides induce ethylene production and expression of the gene encoding aminocyclopropane 1-carboxylic acid oxidase in tomato plants, Glycobiology, 8, 579–583.

    CAS  PubMed  Google Scholar 

  29. Falasca, G., Capitani, F., Della Rovere, F., Zaghi, D., Franchin, C., Biondi, S., and Altamura, M. M. (2008) Oligogalacturonides enhance cytokinin-induced vegetative shoot formation in tobacco explants, inhibit polyamine biosynthetic gene expression, and promote long-term remobilization of cell calcium, Planta, 227, 835–852.

    CAS  PubMed  Google Scholar 

  30. Thain, J. F., Gubb, J. K., and Wildon, D. C. (1995) Depolarization of tomato leaf cells by oligogalacturonide elicitors, Plant Cell Environ., 18, 211–214.

    CAS  Google Scholar 

  31. McDougall, G. J., and Fry, S. C. (1988) Inhibition of auxin-stimulated growth of pea stem segments by a specific nonasaccharide of xyloglucan, Planta, 175, 412–416.

    CAS  PubMed  Google Scholar 

  32. Warneck, H., and Seitz, H. U. (1993) Inhibition of gibberellic acid-induced elongation-growth of pea epicotyls by xyloglucan oligosaccharides, J. Exp. Bot., 44, 1105–1109.

    CAS  Google Scholar 

  33. Warneck, H. M., Haug, T, and Seitz, H. U. (1996) Activation of cell wall-associated peroxidase isoenzymes in pea epicotyls by a xyloglucan-derived nonasaccharide, J. Exp. Bot., 47, 1897–1904.

    CAS  Google Scholar 

  34. McDougall, G. J., and Fry, C. S. (1990) Xyloglucan oligosaccharides promote growth and activate cellulase: evidence for a role of cellulase in cell expansion, Plant Physiol., 93, 1042–1048.

    CAS  PubMed Central  PubMed  Google Scholar 

  35. Pavlova, Z. N., Ash, A. O., Vnuckova, V. A., Babakov, A. V., Torgov, V. I., Nechaev, O. A., Usov, A. I., and Shibaev, V. N. (1992) Biological activity of a synthetic pentasaccharide fragment of xyloglucan, Plant Sci., 85, 131–134.

    CAS  Google Scholar 

  36. Zabotina, O. A., Ayupova, D. A., Larskaya, I. A., Nikolaeva, O. G., Petrovicheva, G. A., and Zabotin, A. I. (1998) Physiologically active oligosaccharides accumulating in the roots of winter wheat during adaptation to low temperature, Russ. J. Plant Physiol., 45, 221–226.

    CAS  Google Scholar 

  37. Zabotin, A. I., Barisheva, T S., Trofimova, O. I., Toroschina, T E., Larskaya, I. A., and Zabotina, O. A. (2009) Oligosaccharin and ABA synergistically affect the acquisition of freezing tolerance in winter wheat, Plant Physiol. Biochem., 47, 854–858.

    CAS  PubMed  Google Scholar 

  38. Cutillas-Iturralde, A., Fulton, D. C., Fry, S. C., and Lorences, E. P. (1998) Xyloglucan-derived oligosaccharides induce ethylene synthesis in persimmon (Diospyros kaki L.) fruit, J. Exp. Bot., 49, 701–706.

    CAS  Google Scholar 

  39. Kakosova, A., Digonnet, C., Goffner, D., and Liskova, D. (2013) Galactoglucomannan oligosaccharides are assumed to affect tracheary element formation via interaction with auxin in Zinnia xylogenic cell culture, Plant Cell Rep., 32, 479–487.

    CAS  PubMed  Google Scholar 

  40. Kollarova, K., Vatehova, Z., Slovakova, L., and Liskova, D. (2010) Interaction of galactoglucomannan oligosaccharides with auxin in mung bean primary root, Plant Physiol. Biochem., 48, 401–406.

    CAS  PubMed  Google Scholar 

  41. Melotto, E., Greve, L. C., and Labavitch, J. M. (1994) Cell wall metabolism in ripening fruit: biologically active pectin oligomers in ripening tomato (Lycopersicon esculentum Mill) fruits, Plant Physiol., 106, 575–581.

    CAS  PubMed Central  PubMed  Google Scholar 

  42. Lozovaya, V. V., Zabotina, O. A., Rumyantseva, N. I., Malihov, R. G., and Zihareva, M. V. (1993) Stimulation of root development on buckwheat thin cell-layer explants by pectic fragments from pea stem cell walls, Plant Cell Rep., 12, 530–533.

    CAS  PubMed  Google Scholar 

  43. Zabotina, O. A., Gurjanov, O. P., Ibragimova, N. N., Ayupova, D. A., and Lozovaya, V. V. (1998) Rhizogenesis in buckwheat thin-cell-layer explants: effect of plant oligosaccharides, Plant Sci., 135, 195–201.

    CAS  Google Scholar 

  44. Larskaya, I. A., Barisheva, T S., Zabotin, A. I., and Gorshkova, T. A. (2015) Character of oligosaccharin OSRG participation in the IAA-induced formation of adventitious roots, Russ. J. Plant Physiol., 62, 171–178.

    CAS  Google Scholar 

  45. Ochoa-Villarreal, M., Aispuro-Hernandez, E., Vargas-Arispuro, I., and Martinez-Tellez, M. A. (2012) Plant cell wall polymers: function, structure and biological activity of their derivatives, in Polymerizatin, Vol. 4 (De Souza Gomes, A., ed.) InTech, pp. 63–86.

    Google Scholar 

  46. Schroder, R., and Knoop, B. (1995) An oligosaccharide growth-factor in plant suspension-cultures- a proposed structure, J. Plant Physiol., 146, 139–147.

    Google Scholar 

  47. Fry, S. C. (1986) In vivo formation of xyloglucan nonasaccharide: a possible biologically-active cell-wall fragment, Planta, 169, 443–453.

    CAS  PubMed  Google Scholar 

  48. Kabel, M. A., Schols, H. A., and Voragen, A. G. J. (2001) Mass determination of oligosaccharides by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry following HPLC, assisted by on-line desalting and automated sample handling, Carbohydr. Polym., 44, 161–165.

    CAS  Google Scholar 

  49. Matamoros Fernandez, L. E., Obel, N., Scheller, H. V., and Roepstorff, P. (2003) Characterization of plant oligosaccharides by matrix-assisted laser desorption/ionization and electrospray mass spectrometry, J. Mass. Spectrom., 38, 427–437.

    PubMed  Google Scholar 

  50. Bauer, S. (2012) Mass spectrometry for characterizing plant cell wall polysaccharides, Front. Plant Sci., 3, 45–50.

    CAS  PubMed Central  PubMed  Google Scholar 

  51. Schols, H. A., Voragen, A. G. J., and Colquhoun, I. J. (1994) Isolation and characterization of rhamnogalacturonan oligomers, liberated during degradation of pectic hairy regions by rhamnogalacturonase, Carbohydr. Res., 256, 97–111.

    CAS  PubMed  Google Scholar 

  52. Jia, Z., Cash, M., Darvill, A. G., and York, W. S. (2005) NMR characterization of endogenously O-acetylated oligosaccharides isolated from tomato (Lycopersicon esculentum) xyloglucan, Carbohydr. Res., 340, 1818–1825.

    CAS  PubMed  Google Scholar 

  53. Toukach, F. V., and Ananikov, V. P. (2013) Recent advances in computational predictions of NMR parameters for the structure elucidation of carbohydrates: methods and limitations, Chem. Soc. Rev., 42, 8376–8415.

    CAS  PubMed  Google Scholar 

  54. Augur, C., Yu, I., Sakai, K., Ogawa, T, Sina, P., Darvill, A. G., and Albersheim, P. (1992) Further studies of the ability of xyloglucan oligosaccharides to inhibition auxin-stimulated growth, Plant Physiol., 99, 180–185.

    CAS  PubMed Central  PubMed  Google Scholar 

  55. Branca, C., De Lorenzo, G., and Cervone, F. (1988) Competitive inhibition of the auxin-induced elongation by a-D-oligogalacturonides in pea stem segments, Physiol. Plant., 72, 499–504.

    CAS  Google Scholar 

  56. Auxtova-Samajova, O., Liskova, D., Kakoniova, D., Kubackova, M., Karacsonyi, S., and Bilisics, L. (1996) Inhibition of auxin stimulated short-term elongation growth of pea stem segments by galactoglucomannanderived oligosaccharides, J. Plant Physiol., 147, 611–613.

    CAS  Google Scholar 

  57. Boller, T, and Felix, G. (2009) A renaissance of elicitors: perception of microbe-associated molecular patterns and danger signals by pattern recognition receptors, Annu. Rev. Plant Biol., 60, 379–400.

    CAS  PubMed  Google Scholar 

  58. Tor, M., Lotze, M. T, and Holton, N. (2009) Receptormediated signaling in plants: molecular patterns and programmes, J. Exp. Bot., 60, 3645–3654.

    PubMed Central  PubMed  Google Scholar 

  59. Malinovsky, F. G., Fangel, J. U., and Willats, W. G. T (2014) The role of the cell wall in plant immunity, Front. Plant Sci., 5, 1–11.

    Google Scholar 

  60. Zabotin, A. I., Barisheva, T. S., Larskaya, I. A., Toroshina, T. E., Trofimova, O. I., Hahn, M. G., and Zabotina, O. A. (2005) Oligosaccharin- a new systemic factor in the acquisition of freeze tolerance in winter plants, Plant Biosyst., 139, 36–41.

    Google Scholar 

  61. Domann, P. J., Pardos-Pardos, A. C., Fernandes, D. L., Spencer, D. I. R., Radcliffe, C. M., Royle, L., Dwek, R. A., and Rudd, P. M. (2007) Separation-based glycoprofiling approaches using fluorescent labels, Pract. Proteom., 1, 70–76.

    Google Scholar 

  62. Wuhrer, M. (2013) Glycomics using mass spectrometry, Glycoconj. J., 30, 11–22.

    CAS  PubMed Central  PubMed  Google Scholar 

  63. Kristic, J., Vuckovic, F., Menni, C., Klaric, L., Keser, T, Beceheli, I., Pucic-Bakovic, M., Novokmet, M., Mangino, M., Thaqi, K., Rudan, P., Novokmet, N., Sarac, J., Missoni, S., Kolcic, I., Polasek, O., Rudan, I., Campbell, H., Hayward, C., Aulchenko, Y., Valdes, A., Wilson, J. F., Gornik, O., Primorac, D., Zoldos, V., Spector, T, and Lauc, G. (2014) Glycans are a novel biomarker of chronological and biological ages, J. Gerontol. Biol. Sci. Med. Sci., 69, 779–789.

    CAS  Google Scholar 

  64. Hudak, J. E., and Bertozzi, C. R. (2014) Glycotherapy: new advances inspire a reemergence of glycans in medicine, Chem. Biol., 21, 16–37.

    CAS  PubMed Central  PubMed  Google Scholar 

  65. Moloshok, T, Pearce, G., and Ryan, C. A. (1992) Oligouronide signaling of proteinase inhibitor genes in plants: structure-activityrelationships of di- and trigalacturonic acids and their derivatives, Arch. Biochem. Biophys., 294, 731–734.

    CAS  PubMed  Google Scholar 

  66. Low, P. S., and Merida, J. R. (1996) The oxidative burst in plant defense: function and signal transduction, Physiol. Plant., 96, 533–542.

    CAS  Google Scholar 

  67. Rodionova, N. A., Milyaeva, E. L., Nikiforova, V. Yu., Martinovich, L. I., Zagustina, N. A., Mestechkina, N. M., Shcherbukhin, V. D., and Bezborodov, A. M. (1999) Effects of oligogalacturonic acids and pectolytic enzymes on plant flowering, Appl. Biochem. Microbiol., 35, 502–506.

    Google Scholar 

  68. Roberts, A. W., Donovan, S. G., and Haigler, C. H. (1997) A secreted factor induces cell expansion and formation of metaxylem-like tracheary elements in xylogenic suspension cultures of Zinnia, Plant Physiol., 115, 683–692.

    CAS  PubMed Central  PubMed  Google Scholar 

  69. Spiro, M. D., Ridley, B. L., Eberhard, S., Kates, K. A., Mathieu, Y, O’Neill, M. A., Mohnen, D., Guern, J., Darvill, A., and Albersheim, P. (1998) Biological activity of reducing-end-derivatized oligogalacturonides in tobacco tissue cultures, Plant Physiol., 116, 1289–1298.

    CAS  PubMed Central  PubMed  Google Scholar 

  70. Ryan, C. A. (1992) The search for the proteinase inhibitorinducing factor, Plant Mol. Biol., 19, 123–133.

    CAS  PubMed  Google Scholar 

  71. Navazio, L., Moscatiello, R., Bellincampi, D., Baldan, B., Meggio, F., Brini, M., Bowler, C., and Mariani, P. (2002) The role of calcium in oligogalacturonide-activated signaling in soybean cells, Planta, 215, 596–605.

    CAS  PubMed  Google Scholar 

  72. McDougall, G. J., and Fry, S. C. (1989) Structure-activity relationships for xyloglucan oligosaccharides with antiauxin activity, Plant Physiol., 189, 883–887.

    Google Scholar 

  73. Zablackis, E., York, W. S., Pauly, M., Hantus, S., Reiter, W-D., Chapple, C. C. S., Albersheim, P., and Darvill, A. (1996) Substitution of L-fucose by L-galactose in cell walls of Arabidopsis mur1, Science, 272, 1808–1810.

    CAS  PubMed  Google Scholar 

  74. Ash, O. A., Loskutova, N. A., Pavlova, Z. N., Abramycheva, N. Yu., Vnuchkova, V. A., Babakov, A. V., Muromtsev, G. S., Melnikova, T N., Nechaev, O. A., Torgov, V. I., Usov, A. I., and Shibaev, V. N. (1995) New physiological effects of oligosaccharide fragments of plant xyloglucan, Doklady RAN, 340, 427–429.

    CAS  Google Scholar 

  75. Dixon, R. A., Jennings, A. C., Davies, L. A., Gerrish, G., and Murthy, D. L. (1989) Elicitor-active components from French bean hypocotyls, Physiol. Mol. Plant Pathol., 34, 99–115.

    CAS  Google Scholar 

  76. Gonzalez-Perez, L., Vazquez-Glaria, A., Perrotta, L., Acosta, A., Scriven, S. A., Herbert, R., Cabrera, J. C., Francis, D., and Rogers, H. J. (2012) Oligosaccharins and Pectimorf® stimulate root elongation and shorten the cell cycle in higher plants, Plant Growth Reg., 68, 211–221.

    CAS  Google Scholar 

  77. McDougall, G. J., and Fry, S. C. (1991) Xyloglucan nonasaccharide, a naturally-occurring oligosaccharin, arises in vivo by polysaccharide breakdown, Plant Physiol., 137, 332–336.

    CAS  Google Scholar 

  78. Frankova, L., and Fry, S. C. (2013) Biochemistry and physiological roles of enzymes that “cut and paste” plant cellwall polysaccharides, J. Exp. Bot., 64, 3519–3550.

    CAS  PubMed  Google Scholar 

  79. Bonnin, E., Garnier, C., and Ralet, M-C. (2014) Pectinmodifying enzymes and pectin-derived materials: applications and impacts, Appl. Microbiol. Biotechnol., 98, 519–532.

    CAS  PubMed  Google Scholar 

  80. Miller, A. R. (1989) Oxidation of cell wall polysaccharides by hydrogen peroxide: a potential mechanism for cell wall breakdown in plants, Biochem. Biophys. Res Commun., 26, 238–244.

    Google Scholar 

  81. Tabbi, G., Fry, S. C., and Bonomo, R. E (2001) ESR study of the non-enzymic scission of xyloglucan by an ascorbate-H2O2- copper system: the involvement of the hydroxyl radical and the degradation of ascorbate, J. Inorg. Biochem., 84, 179–187.

    CAS  PubMed  Google Scholar 

  82. Dumville, J. C., and Fry, S. C. (2000) Uronic acid-containing oligosaccharins: their biosynthesis, degradation and signaling roles in non-diseased plant tissues, Plant Physiol. Biochem., 38, 125–140.

    CAS  Google Scholar 

  83. Elboutachfaiti, R., Delattre, C., Michaudc, P., Courtois, B., and Courtois, J. (2008) Oligogalacturonans production by free radical depolymerization of polygalacturonan, Int. J. Biol. Macromol., 43, 257–261.

    CAS  PubMed  Google Scholar 

  84. Bacic, A., Harris, P. J., and Stone, B. A. (1988) Structure and function of plant cell walls, Biochem. Plants, 14, 297–371.

    CAS  Google Scholar 

  85. Wolf, S., Hematy, K., and Heofte, H. (2012) Growth control and cell wall signaling in plants, Annu. Rev. Plant Biol., 63, 381–407.

    CAS  PubMed  Google Scholar 

  86. Tarchevsky, I. A. (1993) Catabolism and stress in plants, in 52nd Timiryazev’s Readings [in Russian], Nauka, Moscow.

  87. MacDougall, A. J., Rigby, N. M., Needs, P. W., and Selvendran, R. R. (1992) Movement and metabolism of oligogalacturonide elicitors in tomato shoots, Planta, 188, 566–574.

    CAS  PubMed  Google Scholar 

  88. Warneck, H. M., Fulton, D. C., Seitz, H. U., and Fry, S. C. (1998) Transport, degradation and cell wall-integration of XXFGol, a growth-regulating nonasaccharide of xyloglucan, in pea stems, Planta, 204, 78–85.

    CAS  Google Scholar 

  89. Faugeron, C., Sakr, S., Lhernould, S., Michalski, J. C., Delrot, S., and Morvan, H. (1999) Long-distance transport and metabolism of unconjugated N-glycans in tomato plants, J. Exp. Bot., 50, 1669–1675.

    CAS  Google Scholar 

  90. Baydoun, E. A. H., and Fry, S. C. (1985) The immobility of pectic substances in injured tomato leaves and its bearing on the identity of the wound hormone, Planta, 165, 269–276.

    CAS  PubMed  Google Scholar 

  91. Smith, R. C., and Fry, S. C. (1991) Endotransglycosylation of xyloglucans in plant cell suspension cultures, Biochem. J., 279, 529–535.

    CAS  PubMed Central  PubMed  Google Scholar 

  92. Cosio, E. G., Frey, T., and Ebel, J. (1992) Identification of a high-affinity binding protein for a hepta-beta-glucoside phytoalexin elicitor in soybean, Eur. J. Biochem., 204, 11151123.

    Google Scholar 

  93. Vargas-Rechia, C., Reicher, F., Sierakowski, M. R., Heyraud, A., Driguez, H., and Lienart, Y. (1998) Xyloglucan octasaccharide XXLgol derived from the seeds of Hymenaea courbaril acts as a signaling molecule, Plant Physiol., 116, 1013–1021.

    CAS  PubMed Central  PubMed  Google Scholar 

  94. He, Z-H., Fujiki, M., and Kohorn, B. D. (1996) A cell wall-associated, receptor-like protein kinase, J. Biol. Chem., 127, 19789–19793.

    Google Scholar 

  95. Decreux, A., and Messiaen, J. (2005) Wall-associated kinase WAK1 interacts with cell wall pectins in a calciuminduced conformation, Plant Cell Physiol., 46, 268–278.

    CAS  PubMed  Google Scholar 

  96. Kohorn, B. D., Johansen, S., Shishido, A., Todorova, T, Martinez, R., Defeo, E., and Obregon, P. (2009) Pectin activation of MAP kinase and gene expression is WAK2 dependent, Plant J., 60, 974–982.

    CAS  PubMed Central  PubMed  Google Scholar 

  97. Decreux, A., Thomas, A., Spies, B., Brasseur, R., van Cutsem, P., and Messiaen, J. (2006) In vitro characterization of the homogalacturonan binding domain of the wallassociated kinase WAK1 using site-directed mutagenesis, Phytochemistry, 67, 1068–1079.

    CAS  PubMed  Google Scholar 

  98. Brutus, A., Sicilia, F., Macone, A., Cervone, F., and De Lorenzo, G. (2010) A domain swap approach reveals a role of the plant wall-associated kinase 1 (WAK1) as a receptor of oligogalacturonides, Proc. Nat. Acad. Sci. USA, 107, 9452–9457.

    CAS  PubMed Central  PubMed  Google Scholar 

  99. Ferrari, S., Savatin, D. V., Sicilia, F., Gramegna, G., Cervone, F., and De Lorenzo, G. (2013) Oligogalacturonides: plant damage-associated molecular patterns and regulators of growth and development, Front. Plant Sci., 4, 49–54.

    CAS  PubMed Central  PubMed  Google Scholar 

  100. Mathieu, Y., Kurkdijan, A., Xia, H., Guern, J., Koller, A., Spiro, M. D., O’Neil, M., Albersheim, P., and Darvill, A. (1991) Membrane responses induced by oligogalacturonides in suspension-cultured tobacco cells, Plant J., 1, 333–343.

    Google Scholar 

  101. Mathieu, Y., Guern, J., Spiro, M. D., O’Neill, M. A., Kates, K., Darvill, A. G., and Albersheim, P. (1998) The transient nature of the oligogalacturonide-induced ion fluxes of tobacco cells is not correlated with fragmentation of the oligogalacturonides, Plant J., 16, 305–311.

    CAS  Google Scholar 

  102. Messiaen, J., and Van Cutsem, P. (1994) Pectic signal transduction in carrot cells: membrane, cytosolic and nuclear responses induced by oligogalacturonides, Plant Cell Physiol., 35, 677–689.

    CAS  Google Scholar 

  103. Moscatiello, R., Mariani, P., Sanders, D., and Maathuis, F. J. (2006) Transcriptional analysis of calcium-dependent and calcium-independent signaling pathways induced by oligogalacturonides, J. Exp. Bot., 57, 2847–2865.

    CAS  PubMed  Google Scholar 

  104. Kohorn, B. D., and Kohorn, S. L. (2012) The cell wallassociated kinases, WAKs, as pectin receptors, Front. Plant Sci., 3, 1–5.

    Google Scholar 

  105. Farmer, E. E., Moloshok, T D., Saxton, M. J., and Ryan, C. A. (1991) Oligosaccharide signaling in plants. Specificity of oligouronide-enhanced plasma membrane protein phosphorylation, J. Biol. Chem., 266, 3140–3145.

    CAS  PubMed  Google Scholar 

  106. Reymond, P., Kunz, B., Paul-Pletzer, K., Grimm, R., Eckerskorn, C., and Farmer, E. E. (1996) Cloning of a cDNA encoding a plasma membrane associated, uronide binding phosphoprotein with physical properties similar to viral movement proteins, Plant Cell, 8, 2265–2276.

    CAS  PubMed Central  PubMed  Google Scholar 

  107. Raffaele, S., Bayer, E., Lafarge, D., Cluzet, S., Retana, S. G., Boubekeur, T, Leborgne-Castel, N., Carde, J-P., Lherminier, J., Noirot, E., Satiat-Jeunemaitre, B., Laroche-Traineau, J., Moreau, P., Otti, T, Maule, A. J., Reymond, P., Simon-Plas, F., Farmer, E. E., Bessoule, J-J., and Mongrand, S. (2009) Remorin, a Solanaceae protein resident in membrane rafts and plasmodesmata, impairs Potato virus X movement, Plant Cell, 21, 1541–1555.

    CAS  PubMed Central  PubMed  Google Scholar 

  108. Bariola, P. A., Retelska, D., Stasiak, A., Kammerer, R. A., Fleming, A., Hijri, M., Frank, S., and Farmer, E. E. (2004) Remorins form a novel family of coiled coilforming oligomeric and filamentous proteins associated with apical, vascular and embryonic tissues in plants, Plant Mol. Biol., 55, 579–594.

    CAS  PubMed  Google Scholar 

  109. Raffaele, S., Mongrand, S., Gamas, P., Niebel, A., and Ott, T. (2007) Genome-wide annotation of remorins, a plant-specific protein family: evolutionary and functional perspectives, Plant Physiol., 145, 593–600.

    CAS  PubMed Central  PubMed  Google Scholar 

  110. Vaid, N., Macovel, A., and Tuteja, N. (2013) Knights in action: lectin receptor-like kinases in plant development and stress responses, Mol. Plant., 6, 1405–1418.

    CAS  PubMed  Google Scholar 

  111. Gouget, A., Senchou, V., Govers, F., Sanson, A., Barre, A., Rouge, P., Pont-Lezica, R., and Canut, H. (2006) Lectin receptor kinases participate in protein—protein interactions to mediate plasma membrane—cell wall adhesions in Arabidopsis, Plant Physiol., 140, 81–90.

    CAS  PubMed Central  PubMed  Google Scholar 

  112. Casasoli, M., Spadoni, S., Lilley, K. S., Cervone, F., De Lorenzo, G., and Mattei, B. (2008) Identification by 2-D DIGE of apoplastic proteins regulated by oligogalacturonides in Arabidopsis thaliana, Proteomics, 8, 1042–1054.

    CAS  PubMed  Google Scholar 

  113. Kaku, H., Nishizawa, Y., Ishii-Minami, N., Akimoto-Tomiyama, C., Dohmae, N., Takio, K., Minami, E., and Shibuya, N. (2006) Plant cells recognize chitin fragments for defense signaling through a plasma membrane receptor, Proc. Natl. Acad. Sci. USA, 103, 11086–11091.

    CAS  PubMed Central  PubMed  Google Scholar 

  114. Lorences, E., and Fry, S. (1993) Xyloglucan oligosaccharides with at least two a-D-xylose residues act as acceptor substrates for xyloglucan endotransglycosylase and promote the depolymerization of xyloglucan, Physiol. Plant., 88, 105–112.

    CAS  Google Scholar 

  115. Loreti, E., Bellincampi, D., Millet, C., Alpi, A., and Perata, P. (2002) Elicitors of defense responses repress a gibberellin signaling pathway in barley embryos, J. Plant Physiol., 159, 1383–1386.

    CAS  Google Scholar 

  116. Savatin, D. V., Ferrari, S., Sicilia, F., and De Lorenzo, G. (2011) Oligogalacturonide auxin antagonism does not require posttranscriptional gene silencing or stabilization of auxin response repressors in Arabidopsis, Plant Physiol., 157, 1163–1174.

    CAS  PubMed Central  PubMed  Google Scholar 

  117. Bellincampi, D., Cardarelli, M., Zaghi, D., Serino, G., Salvi, G., Gatz, C., Cervone, F., Altamura, M. M., Costantino, P., and Lorenzo, G. D. (1996) Oligogalacturonides prevent rhizogenesis in rol B transformed tobacco explants by inhibiting auxin-induced expression of the rolB gene, Plant Cell, 8, 477–487.

    CAS  PubMed Central  PubMed  Google Scholar 

  118. Mauro, M. L., De Lorenzo, G., Costantino, P., and Bellincampi, D. (2002) Oligogalacturonides inhibit the induction of late but not of early auxin-responsive genes in tobacco, Planta, 215, 494–501.

    CAS  PubMed  Google Scholar 

  119. Richterova-Kucerova, D., Kollarova, K., Zelko, I., Vatehova, Z., and Liskova, D. (2012) How do galactoglucomannan oligosaccharides regulate cell growth in epidermal and cortical tissues of mung bean seedlings? Plant Physiol. Biochem., 57, 154–158.

    CAS  PubMed  Google Scholar 

  120. Zabotina, O. A., and Zabotin, A. I. (2010) Biologically active oligosaccharide functions in plant cell: updates and prospects, in Oligosaccharides: Sources, Properties and Applications (Gordon, N. S., ed.) Nova Science Publishers, Inc., pp. 1–34.

    Google Scholar 

  121. Augur, C., Benhamou, N., Darvill, A., and Albersheim, P. (1993) Purification, characterization and cell wall localization of an a-fucosidase that inactivates a xyloglucan oligosaccharin, Plant J., 3, 415–426.

    CAS  PubMed  Google Scholar 

  122. De la Torre, F., Sampedro, J., Zarra, I., and Revilla, G. (2002) AtFXG1, an Arabidopsis gene encoding a-Lfucosidase active against fucosylated xyloglucan oligosaccharides, Plant Physiol., 128, 247–255.

    CAS  PubMed Central  PubMed  Google Scholar 

  123. Sampedro, J., Sieiro, C., Revilla, G., Gonzalez-Villa, T, and Zarra, I. (2001) Cloning and expression pattern of a gene encoding an a-xylosidase active against xyloglucan oligosaccharides from Arabidopsis, Plant Physiol., 126, 910–920.

    CAS  PubMed Central  PubMed  Google Scholar 

  124. Garcia-Romera, I., and Fry, S. C. (1995) The longevity of biologically active oligosaccharide in rose cell cultures: degradation by exopolygalacturonase, J. Exp. Bot., 46, 1853–1867.

    CAS  Google Scholar 

  125. Fry, S. C., Aldington, S., Hetherington, P. R., and Aitken, J. (1993) Oligosaccharides as signals and substrates in the plant cell wall, Plant Physiol., 103, 1–5.

    CAS  PubMed Central  PubMed  Google Scholar 

  126. Ramirez, A., Cruz, N., and Franchialfaro, O. (2003) Uso de bioestimuladores en la produccion de guayaba (P. guajava L.) mediante el enraizamiento de esquejes, Cultivos Tropicales, 24, 59–63.

    Google Scholar 

  127. Baque, M. A., Shiragi, M. H. K., Lee, E.-J., and Paek, K.- Y. (2012) Elicitor effect of chitosan and pectin on the biosynthesis of anthraquinones, phenolics and flavonoids in adventitious root suspension cultures of Morinda citrifolia (L.), Austr. J. Crop Sci., 6, 1349–1355.

    CAS  Google Scholar 

  128. Nosov, A. M. (1991) Regulation of the Secondary Compound Synthesis in the Plant Cell Culture in Biology of Cultured Cells and Plant Biotechnology [in Russian], Nauka, Moscow.

  129. Praveen, N., and Murthy, H. N. (2010) Production of withanolide-a from adventitious root cultures of Withania somnifera, Acta Physiol. Plant., 32, 1017–1022.

    CAS  Google Scholar 

  130. Kaida, R., Sugawara, S., Negoro, K., Maki, H., Hayashi, T, and Kaneko, T S. (2010) Acceleration of cell growth by xyloglucan oligosaccharides in suspension-cultured tobacco cells, Mol. Plant., 3, 549–554.

    CAS  PubMed  Google Scholar 

  131. Nieves, N., Poblete, A., Cid, M., Lezcano, Y., Gonzalez-Olmedo, J. L., and Cabrera, J. C. (2006) Evaluacion del Pectimorf como complemento del 2,4-D en el proceso de embriogenesis somatica en cana de azucar, Cultivos Tropicales, 27, 25–30.

    Google Scholar 

  132. Allegre, M., Heloir, M. C., Trouvelot, S., Daire, X., Pugin, A., Wendehenne, D., and Adrian, M. (2009) Are grapevine stomata involved in the elicitor-induced protection against downy mildew? Mol. Plant Microbe Interact., 22, 977–986.

    CAS  PubMed  Google Scholar 

  133. Aziz, A., Heyraud, A., and Lambert, B. (2004) Oligogalacturonide signal transduction, induction of defense-related responses and protection of grapevine against Botrytis cinerea, Planta, 218, 767–774.

    CAS  PubMed  Google Scholar 

  134. Garcia-Sahagun, M. L., Martinez-Juarez, V., Avendaio-Lopez, A. N., Padilla-Sahagun, M. C., and Izquierdo-Oviedo, H. (2009) Accion de oligosacaridos en el rendimiento y calidad de tomate, Revista Fitotecnia Mexicana, 32, 295–301.

    Google Scholar 

  135. Marina-de la Huerta, C., Fernandez, L., Saborit, M., Castillo, P., and Nieto, M. (2005) Comportamiento de la planta de cana de azucar tratada con ENERPLANT cultivada en suelos vertisoles, Revista Electronica Granma Ciencia, 9, 1–6.

    Google Scholar 

  136. Jeurink, P. V., van Esch, B. C., Rijnierse, A., Garssen, J., and Knippels, L. M. J. (2013) Mechanisms underlying immune effects of dietary oligosaccharides, Am. J. Clin. Nutr., 98, 572S–577S.

    CAS  PubMed  Google Scholar 

  137. Ninonuevo, M. R., and Lebrilla, C. B. (2009) Mass spectrometric methods for analysis of oligosaccharides in human milk, Nutr. Rev., 67, 216–226.

    Google Scholar 

  138. Roberford, M. (2007) Prebiotics: the concept revisited, J. Nutr., 137, 830S–837S.

    Google Scholar 

  139. Casci, T, and Rastall, R. A. (2006) Manufacture of prebiotic oligosaccharides, in Prebiotics: Development and Application (Gibson, G. R., and Rastall, R. A., eds.) John Wiley & Sons Ltd, Chichester, pp. 29–56.

    Google Scholar 

  140. Valyshev, A. V., and Golovchenko, V. V. (2012) Prebiotic activity of pectins and their derivatives, Byull. Orenburg Nauch. Tsentra UrO RAN, 3, 1–8.

    Google Scholar 

  141. Rycroft, C. E., Jones, M. R., Gibson, G. R., and Rastall, R. A. (2001) A comparative in vitro evaluation of the fermentation properties of prebiotic oligosaccharides, J. Appl. Microbiol., 91, 878–887.

    CAS  PubMed  Google Scholar 

  142. Hartemink, R., van Laere, K. M. J., Mertens, A. K. C., and Rombouts, F. M. (1996) Fermentation of xyloglucan by intestinal bacteria, Anaerobe, 2, 223–230.

    CAS  Google Scholar 

  143. Van Laere, K. M. J., Hartemink, R., Bosveld, M., Schols, H. A., and Voragen, A. G. J. (2000) Fermentation of plant cell wall derived polysaccharides and their corresponding oligosaccharides by intestinal bacteria, J. Agricult. Food Chem., 48, 1644–1652.

    CAS  Google Scholar 

  144. Garthoff, J. A., Heemskerk, S., Hempenius, R. A., Lina, B. A. R., Krul, C. A. M., and Koeman, J. H. (2010) Safety evaluation of pectin derived acidic oligosaccharides (pAOS): genotoxicity and sub-chronic studies, Reg. Toxicol. Pharmacol., 57, 31–42.

    CAS  Google Scholar 

  145. Li, T, Li, S., Du, L., Wang, N., Guo, M., Zhang, J., and Zhang, H. (2010) Effects of haw pectic oligosaccharide on lipid metabolism and oxidative stress in experimental hyperlipidemia mice induced by high-fat diet, Food Chem., 121, 1010–1013.

    CAS  Google Scholar 

  146. Olano-Martin, E., Williams, M. R., Gibson, G. R., and Rastall, R. A. (2003) Pectins and pectic-oligosaccharides inhibit Escherichia coli O157:H7 Shiga toxin as directed towards the human colonic cell line HT29, FEMS Microbiol. Lett., 218, 101–105.

    CAS  PubMed  Google Scholar 

  147. Trevisi, P., De Filippi, S., Minieri, L., Mazzoni, M., Modesto, M., Biavati, B., and Bosi, P. (2008) Effect of fructo-oligosaccharides and different doses of Bifidobacterium animalis in a weaning diet on bacterial translocation and Toll-like receptor gene expression in pig, Nutrition, 24, 1023–1029.

    CAS  PubMed  Google Scholar 

  148. Guggenbichler, J. P., Bettignies-Dutz, A., Meissner, P., Schellmoser, S., and Jurenitsch, J. (1997) Acidic oligosaccharides from natural sources block adherence of Escherichia coli on uroepithelial cells, Pharmac. Pharmacol. Lett., 7, 35–38.

    CAS  Google Scholar 

  149. Onumpai, C., Kolida, S., Bonnin, E., and Rastall, R. (2011) Utilization and selectivity of pectin fractions with various structures, Appl. Environ. Microbiol., 77, 57475754.

    Google Scholar 

  150. Vos, A. P., van Esch, E. C. A. M., Stahl, B., M’Rabet, L., Folkerts, G., Nijkamp, F. P., and Garssen, J. (2007) Dietary supplementation with specific oligosaccharide mixtures decreases parameters of allergic asthma in mice, Int. Immunopharmacol., 7, 1582–1587.

    CAS  PubMed  Google Scholar 

  151. Wang, J., Sun, B., Cao, Y, Song, H., and Tian, Y (2008) Inhibitory effect of wheat bran feruloyl oligosaccharides on oxidative DNA damage in human lymphocytes, Food Chem., 109, 129–136.

    CAS  PubMed  Google Scholar 

  152. Wu, J. H., Xu, C., Shan, C. Y, and Tan, R. X. (2006) Antioxidant properties and PC12 cell protective effects of APS-1 a polysaccharide from Aloe vera var. chinensis, Life Sci., 78, 622–630.

    CAS  PubMed  Google Scholar 

  153. Chun-hui, L., Chang-hai, W., Zhi-liang, X., and Yi, W (2007) Isolation, chemical characterization and antioxidant activities of two polysaccharides from the gel and the skin of Aloe barbadensis Miller irrigated with sea water, Process Biochem., 42, 961–970.

    Google Scholar 

  154. Uhlenbruk, G., Beuth, J., Oette, K., Roszkowski, W., Ko, H. L., and Pulverer, G. (1986) Prevention of experimental liver metastases by arabinogalactan, Naturwissenschaften, 73, 626–627.

    Google Scholar 

  155. Medvedeva, E. N., Babkin, V. A., and Ostroukhova, L. A. (2003) Larch arabinogalactan- properties and prospects of using, Khim. Rast. Syr’ya, 1, 27–37.

    Google Scholar 

  156. Gronhaug, T E., Ghildyal, P., Barsett, H., Michaelsen, T E., Morris, G., and Diallo, D. (2010) Bioactive arabinogalactans from the leaves of Opilia celtidifolia Endl. ex Walp. (Opiliaceae), Glycobiology, 20, 1654–1664.

    CAS  PubMed  Google Scholar 

  157. Popov, S. V., and Ovodov, Y. S. (2013) Polypotency of the immunomodulatory effect of pectins, Biochemistry (Moscow), 78, 823–835.

    CAS  Google Scholar 

  158. Popov, S. V., Ovodova, R. G., Golovchenko, V. V., Khramova, D. S., Markov, P. A., Smirnov, V. V., Shashkov, A. S., and Ovodov, Y. S. (2014) Pectic polysaccharides of the fresh plum Prunus domestica L. isolated with a simulated gastric fluid and their anti-inflammatory and antioxidant activities, Food Chem., 143, 106–113.

    CAS  PubMed  Google Scholar 

  159. Vos, A. P., Haarman, M., van Ginkel, J.-W. H., Knol, J., Stahl, B., Boehm, G., M’Rabet, L., Nijkamp, F. P., and Garssen, J. (2007) Dietary supplementation of neutral and acidic oligosaccharides enhances Th1-dependent vaccination responses in mice, Pediatr. Allergy Immunol., 18, 304312.

    Google Scholar 

  160. Barondes, S. H., Castronovo, V., Cooper, D. N. W., Cummings, R. D., Drickmer, K., and Feizi, T (1994) Galectins- a family of animal beta-galactoside-binding lectins, Cell, 76, 597–598.

    CAS  PubMed  Google Scholar 

  161. Rapoport, E. M., Kurmyshkina, O. V., and Bovin, N. V. (2008) Mammalian galectins: structure, carbohydrate specificity, and functions, Biochemistry (Moscow), 73, 393–405.

    CAS  Google Scholar 

  162. Glinsky, V. V., and Raz, A. (2009) Modified pectin antimetastatic properties: one bullet, multiple targets, Carbohydr. Res., 344, 1788–1791.

    CAS  PubMed Central  PubMed  Google Scholar 

  163. Takenaka, Y, Fukumori, T, and Raz, A. (2002) Galectin- 3 and metastasis, Clycoconj. J., 19, 543–549.

    CAS  Google Scholar 

  164. Gunning, A. P., Bongaerts, R. J. M., and Morris, V. J. (2009) Recognition of galactan components of pectin by galectin-3, FASEB J., 23, 415–424.

    CAS  PubMed  Google Scholar 

  165. Hagmar, B., Ryd, W., and Skomedal, H. (1991) Arabinogalactan blockade of experimental metastases to liver by murine hepatoma, Invasion and Metastasis, 11, 348–355.

    CAS  PubMed  Google Scholar 

  166. Hauer, J., and Anderer, F. A. (1993) Mechanism of stimulation of human natural killer cytotoxicity by arabinogalactan from Larixoccidentalis, Cancer Immunol. Immunother., 36, 237–244.

    CAS  PubMed  Google Scholar 

  167. Miller, M. C., Klyosov, A., and Mayo, K. H. (2009) The alpha-galactomannan Davanat binds galectin-1atasitedifferent from the conventional galectin carbohydrate binding domain, Glycobiology, 19, 1034–1045.

    CAS  PubMed Central  PubMed  Google Scholar 

  168. Tevyashova, A. N., Olsufyeva, E. N., Preobrazhenskaya, M. N., Klyosov, A. A., Zomer, E., and Platt, D. (2007) New conjugates of antitumor antibiotic doxorubicin with water-soluble galactomannan: synthesis and biological activity, Russ. J. Bioorg. Chem., 33, 139–145.

    CAS  Google Scholar 

  169. Lubrano, C., Flavet, L., Saintigny, G., and Robin, J. (2007) Methods of treating aging of skin with oligosaccharides in cosmetic or dermatological compositions that stimulate adhesion of keratinocytes to major proteins of the dermoepidermal junction and restore epidermal cohesion, US Patent, No. US 2007/0293433A1.

  170. Fiehn, O. (2002) Metabolomics- the link between genotypes and phenotypes, Plant Mol. Biol., 48, 155–171.

    CAS  PubMed  Google Scholar 

  171. Lokhov, P. G., and Archakov, A. I. (2009) Mass spectrometry methods in metabolomics, Biochemistry (Moscow), Suppl. Ser. B: Biomed. Chem., 3, 1–9.

    Google Scholar 

  172. Pabst, M., and Altmann, F. (2011) Glycan analysis by modern instrumental methods, Proteomics, 11, 631–643.

    CAS  PubMed  Google Scholar 

  173. Adamczyk, B., Tharmalingam, T, and Rudd, P. M. (2011) Glycans as cancer biomarkers, Biochim. Biophys. Acta, 1820, 1347–1353.

    PubMed  Google Scholar 

  174. Tarchevsky, I. A. (2002) Signal System of Plant Cells [in Russian], Nauka, Moscow.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. A. Larskaya.

Additional information

To whom correspondence should be addressed.

Published in Russian in Biokhimiya, 2015, Vol. 80, No. 7, pp. 1049-1071.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Larskaya, I.A., Gorshkova, T.A. Plant oligosaccharides — outsiders among elicitors?. Biochemistry Moscow 80, 881–900 (2015). https://doi.org/10.1134/S0006297915070081

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297915070081

Keywords

Navigation