Skip to main content
Log in

Heavy metal resistance in Cupriavidus metallidurans CH34 is governed by an intricate transcriptional network

  • Published:
BioMetals Aims and scope Submit manuscript

Abstract

The soil bacterium Cupriavidus metallidurans CH34 contains a high number of heavy metal resistance genes making it an interesting model organism to study microbial responses to heavy metals. In this study the transcriptional response of strain CH34 was measured when challenged to sub-lethal concentrations of various essential or toxic metals. Based on the global transcriptional responses for each challenge and the overlap in upregulated genes between different metal responses, the sixteen metals were clustered in three groups. In addition, the transcriptional response of already known metal resistance genes was assessed, and new metal response gene clusters were identified. The majority of the studied metal response loci showed similar expression profiles when cells were exposed to different metals, suggesting complex interplay at transcriptional level between the different metal responses. The pronounced redundancy of these metal resistant regions—as illustrated by the large number of paralogous genes—combined with the phylogenetic distribution of these metal response regions within either evolutionary related or other metal resistant bacteria, provides important insights on the recent evolutionary forces shaping this naturally soil-dwelling bacterium into a highly metal-resistant strain well adapted to harsh and anthropogenic environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate—a practical and powerful approach to multiple testing. J R Stat Soc Ser B Methodol 57:289–300

    Google Scholar 

  • Brim H, Heuer H, Krogerrecklenfort E, Mergeay M, Smalla K (1999) Characterization of the bacterial community of a zinc-polluted soil. Can J Microbiol 45:326–338

    Article  PubMed  CAS  Google Scholar 

  • Chen P, Greenberg B, Taghavi S, Romano C, van der Lelie D, He C (2005) An exceptionally selective lead(II)-regulatory protein from Ralstonia metallidurans: development of a fluorescent lead(II) probe. Angew Chem Int Ed Engl 44:2715–2719

    Article  PubMed  CAS  Google Scholar 

  • De Angelis F, Lee JK, O’Connell JD III, Miercke LJ, Verschueren KH, Srinivasan V, Bauvois C, Govaerts C, Robbins RA, Ruysschaert JM, Stroud RM, Vandenbussche G (2010) Metal-induced conformational changes in ZneB suggest an active role of membrane fusion proteins in efflux resistance systems. Proc Natl Acad Sci USA 107:11038–11043

    Article  PubMed  Google Scholar 

  • Diels L, Mergeay M (1990) DNA probe-mediated detection of resistant bacteria from soils highly polluted by heavy metals. Appl Environ Microbiol 56:1485–1491

    PubMed  CAS  Google Scholar 

  • Dong Q, Mergeay M (1994) Czc/cnr efflux: a three-component chemiosmotic antiport pathway with a 12-transmembrane-helix protein. Mol Microbiol 14:185–187

    Article  PubMed  CAS  Google Scholar 

  • Dressler C, Kues U, Nies DH, Friedrich B (1991) Determinants encoding resistance to several heavy metals in newly isolated copper-resistant bacteria. Appl Environ Microbiol 57:3079–3085

    PubMed  CAS  Google Scholar 

  • Goris J, De Vos P, Coenye T, Hoste B, Janssens D, Brim H, Diels L, Mergeay M, Kersters K, Vandamme P (2001) Classification of metal-resistant bacteria from industrial biotopes as Ralstonia campinensis sp. nov., Ralstonia metallidurans sp. nov. and Ralstonia basilensis Steinle et al. 1998 emend. Int J Syst Evol Microbiol 51:1773–1782

    Article  PubMed  CAS  Google Scholar 

  • Grass G, Grosse C, Nies DH (2000) Regulation of the cnr cobalt and nickel resistance determinant from Ralstonia sp. strain CH34. J Bacteriol 182:1390–1398

    Article  PubMed  CAS  Google Scholar 

  • Grosse C, Anton A, Hoffmann T, Franke S, Schleuder G, Nies DH (2004) Identification of a regulatory pathway that controls the heavy-metal resistance system Czc via promoter czcNp in Ralstonia metallidurans. Arch Microbiol 182:109–118

    Article  PubMed  CAS  Google Scholar 

  • Grosse C, Friedrich S, Nies DH (2007) Contribution of extracytoplasmic function sigma factors to transition metal homeostasis in Cupriavidus metallidurans strain CH34. J Mol Microbiol Biotechnol 12:227–240

    Article  PubMed  CAS  Google Scholar 

  • Henne KL, Nakatsu CH, Thompson DK, Konopka AE (2009a) High-level chromate resistance in Arthrobacter sp. strain FB24 requires previously uncharacterized accessory genes. BMC Microbiol 9:199

    Article  PubMed  Google Scholar 

  • Henne KL, Turse JE, Nicora CD, Lipton MS, Tollaksen SL, Lindberg C, Babnigg G, Giometti CS, Nakatsu CH, Thompson DK, Konopka AE (2009b) Global proteomic analysis of the chromate response in Arthrobacter sp. strain FB24. J Proteome Res 8:1704–1716

    Article  PubMed  CAS  Google Scholar 

  • Hobman JL, Yamamoto K, Oshima T (2007) Transcriptomic responses of bacterial cells to sublethal metal ion stress. In: Nies DH, Silver S (eds) Molecular microbiology of heavy metals. Springer Verlag Microbial Monographs. Springer, Berlin, pp 73–116

    Google Scholar 

  • Hynninen A, Touze T, Pitkanen L, Mengin-Lecreulx D, Virta M (2009) An efflux transporter PbrA and a phosphatase PbrB cooperate in a lead-resistance mechanism in bacteria. Mol Microbiol 74:384–394

    Article  PubMed  CAS  Google Scholar 

  • Imbeaud S, Graudens E, Boulanger V, Barlet X, Zaborski P, Eveno E, Mueller O, Schroeder A, Auffray C (2005) Towards standardization of RNA quality assessment using user-independent classifiers of microcapillary electrophoresis traces. Nucleic Acids Res 33:e56

    Article  PubMed  Google Scholar 

  • Janssen PJ, Van Houdt R, Moors H, Monsieurs P, Morin N, Michaux A, Benotmane MA, Leys N, Vallaeys T, Lapidus A, Monchy S, Medigue C, Taghavi S, McCorkle S, Dunn J, van der Lelie D, Mergeay M (2010) The complete genome sequence of Cupriavidus metallidurans strain CH34, a master survivalist in harsh and anthropogenic environments. PLoS ONE 5:e10433

    Article  PubMed  Google Scholar 

  • Jian X, Wasinger EC, Lockard JV, Chen LX, He C (2009) Highly Sensitive and Selective Gold(I) Recognition by a Metalloregulator in Ralstonia metallidurans. J Am Chem Soc 131:10968–10971

    Article  Google Scholar 

  • Juhnke S, Peitzsch N, Hubener N, Grosse C, Nies DH (2002) New genes involved in chromate resistance in Ralstonia metallidurans strain CH34. Arch Microbiol 179:15–25

    Article  PubMed  CAS  Google Scholar 

  • Kanehisa M, Araki M, Goto S, Hattori M, Hirakawa M, Itoh M, Katayama T, Kawashima S, Okuda S, Tokimatsu T, Yamanishi Y (2008) KEGG for linking genomes to life and the environment. Nucleic Acids Res 36:D480–D484

    Article  PubMed  CAS  Google Scholar 

  • Kaur A, Pan M, Meislin M, Facciotti MT, El-Gewely R, Baliga NS (2006) A systems view of haloarchaeal strategies to withstand stress from transition metals. Genome Res 16:841–854

    Article  PubMed  CAS  Google Scholar 

  • Krzywinski M, Schein J, Birol I, Connors J, Gascoyne R, Horsman D, Jones SJ, Marra MA (2009) Circos: an information aesthetic for comparative genomics. Genome Res 19:1639–1645

    Article  PubMed  CAS  Google Scholar 

  • Ledgham F, Quest B, Vallaeys T, Mergeay M, Coves J (2005) A probable link between the DedA protein and resistance to selenite. Res Microbiol 156:367–374

    Article  PubMed  CAS  Google Scholar 

  • Legatzki A, Grass G, Anton A, Rensing C, Nies DH (2003) Interplay of the Czc system and two P-type ATPases in conferring metal resistance to Ralstonia metallidurans. J Bacteriol 185:4354–4361

    Article  PubMed  CAS  Google Scholar 

  • Mergeay M, Houba C, Gerits J (1978) Extrachromosomal inheritance controlling resistance to cadmium, cobalt, copper and zinc ions: evidence from curing in a Pseudomonas. Arch Int Physiol Biochim 86:440–442

    PubMed  CAS  Google Scholar 

  • Mergeay M, Nies D, Schlegel HG, Gerits J, Charles P, Van Gijsegem F (1985) Alcaligenes eutrophus CH34 is a facultative chemolithotroph with plasmid-bound resistance to heavy metals. J Bacteriol 162:328–334

    PubMed  CAS  Google Scholar 

  • Mergeay M, Monchy S, Vallaeys T, Auquier V, Benotmane A, Bertin P, Taghavi S, Dunn J, van der Lelie D, Wattiez R (2003) Ralstonia metallidurans, a bacterium specifically adapted to toxic metals: towards a catalogue of metal-responsive genes. FEMS Microbiol Rev 27:385–410

    Article  PubMed  CAS  Google Scholar 

  • Mergeay M, Monchy S, Janssen P, Van Houdt R, Leys N (2009) Megaplasmids in Cupriavidus Genus and Metal Resistance In: Schwartz E (ed) Microbial Megaplasmids, vol 11. vol Microbiology Monographs. Springer, Berlin, pp 209–238

    Google Scholar 

  • Monchy S, Benotmane MA, Wattiez R, van Aelst S, Auquier V, Borremans B, Mergeay M, Taghavi S, van der Lelie D, Vallaeys T (2006) Transcriptomic and proteomic analyses of the pMOL30-encoded copper resistance in Cupriavidus metallidurans strain CH34. Microbiology 152:1765–1776

    Article  PubMed  CAS  Google Scholar 

  • Monchy S, Benotmane MA, Janssen P, Vallaeys T, Taghavi S, van der Lelie D, Mergeay M (2007) Plasmids pMOL28 and pMOL30 of Cupriavidus metallidurans are specialized in the maximal viable response to heavy metals. J Bacteriol 189:7417–7425

    Article  PubMed  CAS  Google Scholar 

  • Moore CM, Helmann JD (2005) Metal ion homeostasis in Bacillus subtilis. Curr Opin Microbiol 8:188–195

    Article  PubMed  CAS  Google Scholar 

  • Munkelt D, Grass G, Nies DH (2004) The chromosomally encoded cation diffusion facilitator proteins DmeF and FieF from Wautersia metallidurans CH34 are transporters of broad metal specificity. J Bacteriol 186:8036–8043

    Article  PubMed  CAS  Google Scholar 

  • Nies DH (1999) Microbial heavy-metal resistance. Appl Microbiol Biotechnol 51:730–750

    Article  PubMed  CAS  Google Scholar 

  • Nies DH (2003) Efflux-mediated heavy metal resistance in prokaryotes. FEMS Microbiol Rev 27:313–339

    Article  PubMed  CAS  Google Scholar 

  • Nies DH, Silver S (1989) Metal ion uptake by a plasmid-free metal-sensitive Alcaligenes eutrophus strain. J Bacteriol 171:4073–4075

    PubMed  CAS  Google Scholar 

  • Nies DH, Nies A, Chu L, Silver S (1989) Expression and nucleotide sequence of a plasmid-determined divalent cation efflux system from Alcaligenes eutrophus. Proc Natl Acad Sci USA 86:7351–7355

    Article  PubMed  CAS  Google Scholar 

  • Nies DH, Rehbein G, Hoffmann T, Baumann C, Grosse C (2006) Paralogs of genes encoding metal resistance proteins in Cupriavidus metallidurans strain CH34. J Mol Microbiol Biotechnol 11:82–93

    Article  PubMed  CAS  Google Scholar 

  • Noel-Georis I, Vallaeys T, Chauvaux R, Monchy S, Falmagne P, Mergeay M, Wattiez R (2004) Global analysis of the Ralstonia metallidurans proteome: prelude for the large-scale study of heavy metal response. Proteomics 4:151–179

    Article  PubMed  CAS  Google Scholar 

  • Petit-Haertlein I, Girard E, Sarret G, Hazemann JL, Gourhant P, Kahn R, Coves J (2010) Evidence for conformational changes upon copper binding to Cupriavidus metallidurans CzcE. Biochemistry 49:1913–1922

    Article  PubMed  CAS  Google Scholar 

  • Qin J, Rosen BP, Zhang Y, Wang G, Franke S, Rensing C (2006) Arsenic detoxification and evolution of trimethylarsine gas by a microbial arsenite S-adenosylmethionine methyltransferase. Proc Natl Acad Sci USA 103:2075–2080

    Article  PubMed  CAS  Google Scholar 

  • Reith F, Etschmann B, Grosse C, Moors H, Benotmane MA, Monsieurs P, Grass G, Doonan C, Vogt S, Lai B, Martinez-Criado G, George GN, Nies DH, Mergeay M, Pring A, Southam G, Brugger J (2009) Mechanisms of gold biomineralization in the bacterium Cupriavidus metallidurans. Proc Natl Acad Sci USA 106:17757–17762

    Article  PubMed  CAS  Google Scholar 

  • Ritchie ME, Silver J, Oshlack A, Holmes M, Diyagama D, Holloway A, Smyth GK (2007) A comparison of background correction methods for two-colour microarrays. Bioinformatics 23:2700–2707

    Article  PubMed  CAS  Google Scholar 

  • Sarret G, Favier A, Coves J, Hazemann JL, Mergeay M, Bersch B (2010) CopK from Cupriavidus metallidurans CH34 binds Cu(I) in a tetrathioether site: characterization by X-ray absorption and NMR spectroscopy. J Am Chem Soc 132:3770–3777

    Article  PubMed  CAS  Google Scholar 

  • Scherer J, Nies DH (2009) CzcP is a novel efflux system contributing to transition metal resistance in Cupriavidus metallidurans CH34. Mol Microbiol 73:601–621

    Article  PubMed  CAS  Google Scholar 

  • Schmidt T, Schlegel HG (1994) Combined nickel-cobalt-cadmium resistance encoded by the ncc locus of Alcaligenes xylosoxidans 31A. J Bacteriol 176:7045–7054

    PubMed  CAS  Google Scholar 

  • Schroeder A, Mueller O, Stocker S, Salowsky R, Leiber M, Gassmann M, Lightfoot S, Menzel W, Granzow M, Ragg T (2006) The RIN: an RNA integrity number for assigning integrity values to RNA measurements. BMC Mol Biol 7:3

    Article  PubMed  Google Scholar 

  • Sendra V, Cannella D, Bersch B, Fieschi F, Menage S, Lascoux D, Coves J (2006) CopH from Cupriavidus metallidurans CH34. A novel periplasmic copper-binding protein. Biochemistry 45:5557–5566

    Article  PubMed  CAS  Google Scholar 

  • Sendra V, Gambarelli S, Bersch B, Coves J (2009) Site-directed mutagenesis reveals a conservation of the copper-binding site and the crucial role of His24 in CopH from Cupriavidus metallidurans CH34. J Inorg Biochem 103:1721–1728

    Article  PubMed  CAS  Google Scholar 

  • Serres MH, Riley M (2000) MultiFun, a multifunctional classification scheme for Escherichia coli K-12 gene products. Microb Comp Genomics 5:205–222

    PubMed  CAS  Google Scholar 

  • Smyth GK (2004) Linear models and empirical bayes methods for assessing differential expression in microarray experiments. Stat Appl Genet Mol Biol 3:Article3

    Google Scholar 

  • Smyth GK (2005) Limma: linear models for microarray data. In: Gentleman R, Carey VJ, Dudoit S, Irizarry RA, Huber R (eds) Bioinformatics and computational biology solutions using R and bioconductor. Springer, New York, pp 397–420

    Chapter  Google Scholar 

  • Smyth GK, Speed T (2003) Normalization of cDNA microarray data. Methods 31:265–273

    Article  PubMed  CAS  Google Scholar 

  • Taghavi S, Mergeay M, van der Lelie D (1997) Genetic and physical maps of the Alcaligenes eutrophus CH34 megaplasmid pMOL28 and its derivative pMOL50 obtained after temperature-induced mutagenesis and mortality. Plasmid 37:22–34

    Article  PubMed  CAS  Google Scholar 

  • Taghavi S, Lesaulnier C, Monchy S, Wattiez R, Mergeay M, van der Lelie D (2008) Lead(II) resistance in Cupriavidus metallidurans CH34: interplay between plasmid and chromosomally-located functions. Antonie Van Leeuwenhoek 96:171–182

    Article  PubMed  Google Scholar 

  • Tibazarwa C, Wuertz S, Mergeay M, Wyns L, van Der Lelie D (2000) Regulation of the cnr cobalt and nickel resistance determinant of Ralstonia eutropha (Alcaligenes eutrophus) CH34. J Bacteriol 182:1399–1409

    Article  PubMed  CAS  Google Scholar 

  • Vallenet D, Labarre L, Rouy Z, Barbe V, Bocs S, Cruveiller S, Lajus A, Pascal G, Scarpelli C, Medigue C (2006) MaGe: a microbial genome annotation system supported by synteny results. Nucleic Acids Res 34:53–65

    Article  PubMed  CAS  Google Scholar 

  • Van der Auwera GA, Krol JE, Suzuki H, Foster B, Van Houdt R, Brown CJ, Mergeay M, Top EM (2009) Plasmids captured in C. metallidurans CH34: defining the PromA family of broad-host-range plasmids. Antonie Van Leeuwenhoek 96:193–204

    Article  PubMed  Google Scholar 

  • van der Lelie D, Schwuchow T, Schwidetzky U, Wuertz S, Baeyens W, Mergeay M, Nies DH (1997) Two-component regulatory system involved in transcriptional control of heavy-metal homoeostasis in Alcaligenes eutrophus. Mol Microbiol 23:493–503

    Article  PubMed  Google Scholar 

  • Van Houdt R, Monchy S, Leys N, Mergeay M (2009) New mobile genetic elements in Cupriavidus metallidurans CH34, their possible roles and occurrence in other bacteria. Antonie Van Leeuwenhoek. 96:205–226

    Article  PubMed  Google Scholar 

  • von Rozycki T, Nies DH (2009) Cupriavidus metallidurans: evolution of a metal-resistant bacterium. Antonie Van Leeuwenhoek 96:115–139

    Article  Google Scholar 

  • Waldron KJ, Robinson NJ (2009) How do bacterial cells ensure that metalloproteins get the correct metal? Nat Rev Microbiol 7:25–35

    Article  PubMed  CAS  Google Scholar 

  • Yuan C, Lu X, Qin J, Rosen BP, Le XC (2008) Volatile arsenic species released from Escherichia coli expressing the AsIII S-adenosylmethionine methyltransferase gene. Environ Sci Technol 42:3201–3206

    Article  PubMed  CAS  Google Scholar 

  • Zhang YB, Monchy S, Greenberg B, Mergeay M, Gang O, Taghavi S, van der Lelie D (2009) ArsR arsenic-resistance regulatory protein from Cupriavidus metallidurans CH34. Antonie Van Leeuwenhoek 96:161–170

    Article  PubMed  CAS  Google Scholar 

  • Zoropogui A, Gambarelli S, Coves J (2008) CzcE from Cupriavidus metallidurans CH34 is a copper-binding protein. Biochem Biophys Res Commun 365:735–739

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported by internal funds of SCK·CEN and by the European Space Agency through the MESSAGE contracts (PRODEX agreements No. 90037 and 90094).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pieter Monsieurs.

Electronic supplementary material

Below is the link to the electronic supplementary material.

10534_2011_9473_MOESM1_ESM.pdf

Supplementary File 1: Overview of the total number of upregulated genes and split up per replicon, after exposure of C. metallidurans CH34 to a given metal. obs.: the number of upregulated genes located on a specific replicon for a certain metal. exp: the number of expected genes relative to the total number of upregulated genes and the size of the replicon. fold: the fold-change of the number of observed over the number of expected genes. pval: the p-value for a significant enrichment of metal response genes on that replicon based on the hypergeometric distribution. Red colored fields indicate a statistically significant enrichment.(PDF 54 kb)

10534_2011_9473_MOESM2_ESM.pdf

Supplementary File 2: Detailed expression data for all upregulated genes upon metal exposure. Excel file containing all upregulated genes. Different columns are: (A) Probe ID: Probe Identifier, (B) Rmet: Gene number, (C) Genename: gene name, (D) Replicon: accession number of replicon, (E) Product: gene function, (F) cluster name: name of cluster where the gene belongs to, (G) COG: COG classes where the gene belongs to, (H) KEGG: KEGG pathway where the gene belongs to, (I-X) log2 fold changes after induction with one of the 16 metals (#N/A means no measurement). Color code represents: Red = more than 4-fold upregulated, Orange = between 2- and 4-fold upregulated, Green = more than 2-fold down-regulated.(PDF 1752 kb)

Supplementary File 3: Detailed discussion of metal response regions not discussed in manuscript. (PDF 199 kb)

10534_2011_9473_MOESM4_ESM.ppt

Supplementary File 4: Visual summary of the different metal response regions in C. metallidurans CH34. In the vertical axis the different regions are listed (replicon name + name or location of the region). In the horizontal axis, the different metals that were tested are shown. The number indicated on the figure indicates the percentage of genes belong to a certain region that is upregulated by a specific metal.(PPT 523 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Monsieurs, P., Moors, H., Van Houdt, R. et al. Heavy metal resistance in Cupriavidus metallidurans CH34 is governed by an intricate transcriptional network. Biometals 24, 1133–1151 (2011). https://doi.org/10.1007/s10534-011-9473-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10534-011-9473-y

Keywords

Navigation