Skip to main content
Log in

Plasmids captured in C. metallidurans CH34: defining the PromA family of broad-host-range plasmids

  • Original Paper
  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

The self-transmissible, broad-host-range (BHR) plasmid pMOL98 was previously isolated from polluted soil using a triparental plasmid capture approach and shown to possess a replicon similar to that of the BHR plasmids pSB102 and pIPO2. Here, complete sequence analysis and comparative genomics reveal that the 55.5 kb nucleotide sequence of pMOL98 shows extensive sequence similarity and synteny with the BHR plasmid family that now includes pIPO2, pSB102, pTER331, and pMRAD02. They share a plasmid backbone comprising replication, partitioning and conjugative transfer functions. Comparison of the variable accessory regions of these plasmids shows that the majority of natural transposons, as well as the mini-transposon used to mark the plasmids, are inserted in the parA locus. The transposon unique to pMOL98 appears to have inserted from the chromosome of the recipient strain used in the plasmid capture procedure. This demonstrates the necessity for careful screening of plasmids and host chromosomes to avoid mis-interpretation of plasmid genome content. The presence of very similar BHR plasmids with different accessory genes in geographically distinct locations suggests an important role in horizontal gene exchange and bacterial adaptation for this recently defined plasmid group, which we propose to name “PromA”.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

BHR:

Broad host range

CDS:

Coding sequence

HGT:

Horizontal gene transfer

T4SS:

Type IV secretion system

References

  • Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402. doi:10.1093/nar/25.17.3389

    Article  PubMed  CAS  Google Scholar 

  • Ason B, Reznikoff WS (2004) A high-throughput assay for Tn5 Tnp-induced DNA cleavage. Nucleic Acids Res 32:e83. doi:10.1093/nar/gnh080

    Article  PubMed  Google Scholar 

  • Burland V, Shao Y, Perna NT, Plunkett G, Sofia HJ, Blattner FR (1998) The complete DNA sequence and analysis of the large virulence plasmid of Escherichia coli O157:H7. Nucleic Acids Res 26:4196–4204. doi:10.1093/nar/26.18.4196

    Article  PubMed  CAS  Google Scholar 

  • Campbell A, Mrazek J, Karlin S (1999) Genome signature comparisons among prokaryote, plasmid, and mitochondrial DNA. Proc Natl Acad Sci USA 96:9184–9189. doi:10.1073/pnas.96.16.9184

    Article  PubMed  CAS  Google Scholar 

  • Chakraborty R, O’Connor SM, Chan E, Coates JD (2005) Anaerobic degradation of benzene, toluene, ethylbenzene, and xylene compounds by Dechloromonas strain RCB. Appl Environ Microbiol 71:8649–8655. doi:10.1128/AEM.71.12.8649-8655.2005

    Article  PubMed  CAS  Google Scholar 

  • Christie PJ, Cascales E (2005) Structural and dynamic properties of bacterial type IV secretion systems. Mol Membr Biol 22:51–61. doi:10.1080/09687860500063316

    Article  PubMed  CAS  Google Scholar 

  • Coates JD, Chakraborty R, Lack JG, O’Connor SM, Cole KA, Bender KS, Achenbach LA (2001) Anaerobic benzene oxidation coupled to nitrate reduction in pure culture by two strains of Dechloromonas. Nature 411:1039–1043. doi:10.1038/35082545

    Article  PubMed  CAS  Google Scholar 

  • Darling AC, Mau B, Blattner FR, Perna NT (2004) Mauve: multiple alignment of conserved genomic sequence with rearrangements. Genome Res 14:1394–1403. doi:10.1101/gr.2289704

    Article  PubMed  CAS  Google Scholar 

  • de Lorenzo V, Herrero M, Jakubzik U, Timmis KN (1990) Mini-Tn5 transposon derivatives for insertion mutagenesis, promotor probing, and chromosomal insertion of cloned DNA in gram-negative eubacteria. J Bacteriol 172:6568–6572

    PubMed  Google Scholar 

  • Drønen AK, Torsvik V, Goksøyr J, Top EM (1998) Effect of mercury addition on plasmid incidence and gene mobilising capacity in bulk soil. FEMS Microbiol Ecol 27:381–394. doi:10.1016/S0168-6496(98)00085-3

    Google Scholar 

  • Espinosa M, Cohen SN, Couturier M, del Solar G, Diaz-Orejas R, Giraldo R (2000) Plasmid replication and copy number control. In: Thomas CM et al (eds) The horizontal gene pool: bacterial plasmids and gene spread. Harwood Academic Publishers, Amsterdam, pp 1–47

    Google Scholar 

  • Frost LS, Leplae R, Summers AO, Toussaint A (2005) Mobile genetic elements: the agents of open source evolution. Nat Rev Microbiol 3:722–732. doi:10.1038/nrmicro1235

    Article  PubMed  CAS  Google Scholar 

  • Gstalder ME, Faelen M, Mine N, Top EM, Mergeay M, Couturier M (2003) Replication functions of new broad host range plasmids isolated from polluted soils. Res Microbiol 154:499–509. doi:10.1016/S0923-2508(03)00143-8

    Article  PubMed  CAS  Google Scholar 

  • Heuer H, Kopmann C, Binh TT, Top EM, Smalla K (2009) Spreading antibiotic resistance through spread manure: characteristics of a novel plasmid type with low % G + C content. Environ Microbiol. doi: 10.1111/j.1462-2920.2008.01819.x. (Published online)

  • Ito H, Iizuka H (1971) Taxonomic studies on a radio-resistant Pseudomonas. Part XII. Studies on the microorganisms of cereal grain. Agric Biol Chem 35:1566–1571

    Google Scholar 

  • Jeon CO, Park W, Ghiorse WC, Madsen EL (2004) Polaromonas naphthalenivorans sp. nov., a naphthalene-degrading bacterium from naphthalene-contaminated sediment. Int J Syst Evol Microbiol 54:93–97. doi:10.1099/ijs.0.02636-0

    Article  PubMed  CAS  Google Scholar 

  • Kholodii GY, Gorlenko Z, Lomovskaya OL, Mindlin SZ, Yurieva OV, Nikiforov VG (1993) Molecular characterization of an aberrant mercury resistance transposable element from an environmental Acinetobacter strain. Plasmid 30:303–308. doi:10.1006/plas.1993.1064

    Article  PubMed  CAS  Google Scholar 

  • Koonin EV, Wolf YI (2008) Genomics of bacteria and archaea: the emerging dynamic view of the prokaryotic world. Nucleic Acids Res 36:6688–6719. doi:10.1093/nar/gkn668

    Article  PubMed  CAS  Google Scholar 

  • Lawrence JG, Ochman H (1997) Amelioration of bacterial genomes: rates of change and exchange. J Mol Evol 44:383–397. doi:10.1007/PL00006158

    Article  PubMed  CAS  Google Scholar 

  • Liu G, Geurts AM, Yae K, Srinivasan AR, Fahrenkrug SC, Largaespada DA et al (2005) Target-site preferences of sleeping beauty transposons. J Mol Biol 346:161–173. doi:10.1016/j.jmb.2004.09.086

    Article  PubMed  CAS  Google Scholar 

  • Manna D, Breier AM, Higgins NP (2004) Microarray analysis of transposition targets in Escherichia coli: the impact of transcription. Proc Natl Acad Sci USA 101:9780–9785. doi:10.1073/pnas.0400745101

    Article  PubMed  CAS  Google Scholar 

  • Marques MV, da Silva AM, Gomes SL (2001) Genetic organization of plasmid pXF51 from the plant pathogen Xylella fastidiosa. Plasmid 45:184–199. doi:10.1006/plas.2000.1514

    Article  PubMed  CAS  Google Scholar 

  • Mattes TE, Alexander AK, Richardson PM, Munk AC, Han CS, Stothard P, Coleman NV (2008) The genome of Polaromonas sp. strain JS666: insights into the evolution of a hydrocarbon- and xenobiotic-degrading bacterium, and features of relevance to biotechnology. Appl Environ Microbiol 74:6405–6416. doi:10.1128/AEM.00197-08

    Article  PubMed  CAS  Google Scholar 

  • Mazodier P, Davies J (1991) Gene transfer between distantly related bacteria. Annu Rev Genet 25:147–171. doi:10.1146/annurev.ge.25.120191.001051

    Article  PubMed  CAS  Google Scholar 

  • Mela F, Fritsche K, Boersma H, van Elsas JD, Bartels D, Meyer F et al (2008) Comparative genomics of the pIPO2/pSB102 family of environmental plasmids: sequence, evolution, and ecology of pTer331 isolated from Collimonas fungivorans Ter331. FEMS Microbiol Ecol 66:45–62. doi:10.1111/j.1574-6941.2008.00472.x

    Article  PubMed  CAS  Google Scholar 

  • Minakhina S, Kholodii G, Mindlin S, Yurieva O, Nikiforov V (1999) Tn5053 family transposons are res site hunters sensing plasmidal res sites occupied by cognate resolvases. Mol Microbiol 33:1059–1068. doi:10.1046/j.1365-2958.1999.01548.x

    Article  PubMed  CAS  Google Scholar 

  • Ochman H, Lawrence JG, Groisman EA (2000) Lateral gene transfer and the nature of bacterial innovation. Nature 405:299–304. doi:10.1038/35012500

    Article  PubMed  CAS  Google Scholar 

  • Pride DT, Wassenaar TM, Ghose C, Blaser MJ (2006) Evidence of host-virus co-evolution in tetranucleotide usage patterns of bacteriophages and eukaryotic viruses. BMC Genomics 7:8. doi:10.1186/1471-2164-7-8

    Article  PubMed  Google Scholar 

  • Radstrom P, Backman A, Qian N, Kragsbjerg P, Pahlson C, Olcen P (1994) Detection of bacterial DNA in cerebrospinal fluid by an assay for simultaneous detection of Neisseria meningitidis, Haemophilus influenzae, and streptococci using a seminested PCR strategy. J Clin Microbiol 32:2738–2744

    PubMed  CAS  Google Scholar 

  • Reznikoff WS (2003) Tn5 as a model for understanding DNA transposition. Mol Microbiol 47:1199–1206. doi:10.1046/j.1365-2958.2003.03382.x

    Article  PubMed  CAS  Google Scholar 

  • Rhodes G, Parkhill J, Bird C, Ambrose K, Jones MC, Huys G et al (2004) Complete nucleotide sequence of the conjugative tetracycline resistance plasmid pFBAOT6, a member of a group of IncU plasmids with global ubiquity. Appl Environ Microbiol 70:7497–7510. doi:10.1128/AEM.70.12.7497-7510.2004

    Article  PubMed  CAS  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    PubMed  CAS  Google Scholar 

  • Schluter A, Szczepanowski R, Puhler A, Top EM (2007) Genomics of IncP-1 antibiotic resistance plasmids isolated from wastewater treatment plants provides evidence for a widely accessible drug resistance gene pool. FEMS Microbiol Rev 31:449–477. doi:10.1111/j.1574-6976.2007.00074.x

    Article  PubMed  Google Scholar 

  • Schneiker S, Keller M, Droge M, Lanka E, Puhler A, Selbitschka W (2001) The genetic organization and evolution of the broad host range mercury resistance plasmid pSB102 isolated from a microbial population residing in the rhizosphere of alfalfa. Nucleic Acids Res 29:5169–5181. doi:10.1093/nar/29.24.5169

    Article  PubMed  CAS  Google Scholar 

  • Sota M, Tsuda M, Yano H, Suzuki H, Forney LJ, Top EM (2007) Region-specific insertion of transposons in combination with selection for high plasmid transferability and stability accounts for the structural similarity of IncP-1 plasmids. J Bacteriol 189:3091–3098. doi:10.1128/JB.01906-06

    Article  PubMed  CAS  Google Scholar 

  • Suzuki H, Sota M, Brown CJ, Top EM (2008) Using Mahalanobis distance to compare genomic signatures between bacterial plasmids and chromosomes. Nucleic Acids Res 36:e147. doi:10.1093/nar/gkn753

    Article  PubMed  Google Scholar 

  • Szpirer C, Top EM, Couturier M, Mergeay M (1999) Retrotransfer or gene capture: a feature of conjugative plasmids, with ecological and evolutionary significance. Microbiology 145:3321–3329

    PubMed  CAS  Google Scholar 

  • Tatusova TA, Madden TL (1999) BLAST 2 Sequences, a new tool for comparing protein and nucleotide sequences. FEMS Microbiol Lett 174:247–250. doi:10.1111/j.1574-6968.1999.tb13575.x

    Article  PubMed  CAS  Google Scholar 

  • Tauch A, Schneiker S, Selbitschka W, Puhler A, van Overbeek LS, Smalla K et al (2002) The complete nucleotide sequence and environmental distribution of the cryptic, conjugative, broad-host-range plasmid pIPO2 isolated from bacteria of the wheat rhizosphere. Microbiology 148:1637–1653

    PubMed  CAS  Google Scholar 

  • Tett A, Spiers AJ, Crossman LC, Ager D, Ciric L, Dow JM et al (2007) Sequence-based analysis of pQBR103; a representative of a unique, transfer-proficient mega plasmid resident in the microbial community of sugar beet. ISME J 1:331–340

    PubMed  CAS  Google Scholar 

  • Thomas CM (ed) (2000a) The horizontal gene pool: bacterial plasmids and gene spread. Harwood Academic Publishers, Amsterdam

    Google Scholar 

  • Thomas CM (2000b) Paradigms of plasmid organization. Mol Microbiol 37:485–491. doi:10.1046/j.1365-2958.2000.02006.x

    Article  PubMed  CAS  Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680. doi:10.1093/nar/22.22.4673

    Article  PubMed  CAS  Google Scholar 

  • Tobes R, Pareja E (2006) Bacterial repetitive extragenic palindromic sequences are DNA targets for insertion sequence elements. BMC Genomics 7:62. doi:10.1186/1471-2164-7-62

    Article  PubMed  Google Scholar 

  • Top EM, De Smet I, Verstraete W, Dijkmans R, Mergeay M (1994) Exogenous isolation of mobilizing plasmids from polluted soils and sludges. Appl Environ Microbiol 60:831–839

    PubMed  CAS  Google Scholar 

  • Top EM, Moënne-Loccoz Y, Pembroke T, Thomas CM (2000) Phenotypic traits conferred by plasmids. In: Thomas CM (ed) The horizontal gene pool: bacterial plasmids and gene spread. Harwood Academic Publishers, Amsterdam, pp 249–285

    Google Scholar 

  • van Elsas JD, Gardener BB, Wolters AC, Smit E (1998) Isolation, characterization, and transfer of cryptic gene-mobilizing plasmids in the wheat rhizosphere. Appl Environ Microbiol 64:880–889

    PubMed  Google Scholar 

  • Van Houdt R, Monchy S, Leys N, Mergeay M (2009) New mobile genetic elements in the genome of C. metallidurans CH34, their possible roles and their occurrence in other bacteria. Antonie van Leeuwenhoek (in press, this issue)

  • van Passel MW, Bart A, Luyf AC, van Kampen AH, van der Ende A (2006) Compositional discordance between prokaryotic plasmids and host chromosomes. BMC Genomics 7:26. doi:10.1186/1471-2164-7-26

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Microbial Genome Sequencing Program of the National Science Foundation (NSF grant EF-0627988), as well as by a former European Community program BIOTECH (grant BI02-CT92-0491). We are grateful to the DOE Joint Genome Institute (JGI) for providing the DNA sequence of pMOL98 (agreement UA_Top_173_060602). We thank Stacey Poler and Linda Rogers for providing JGI with pMOL98 plasmid DNA and confirming restriction site profiles.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eva M. Top.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(DOC 121 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Van der Auwera, G.A., Król, J.E., Suzuki, H. et al. Plasmids captured in C. metallidurans CH34: defining the PromA family of broad-host-range plasmids. Antonie van Leeuwenhoek 96, 193–204 (2009). https://doi.org/10.1007/s10482-009-9316-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10482-009-9316-9

Keywords

Navigation