Skip to main content

Response of Cupriavidus metallidurans CH34 to Metals

  • Chapter
  • First Online:
Metal Response in Cupriavidus metallidurans

Part of the book series: SpringerBriefs in Molecular Science ((SB BIOMETALS))

Abstract

Cupriavidus metallidurans CH34 displays resistance to a plethora of metals. Its response and underlying genetic determinants are dissected and detailed metal by metal (from arsenic to zinc). An important role for its megaplasmids pMOL28 and pMOL30 is shown, with high level resistance to cadmium, chromate, cobalt, copper, mercury, nickel, lead and zinc mediated by well-known genes for detoxification that are often accompanied by other functions linked to acute or chronic stress. Nevertheless, metal resistance determinants are also found on the chromid (e.g. to chromate, copper and zinc) as well as on a large genomic island integrated in the chromosome (e.g. to cadmium, lead and mercury). Even the core genome participates in certain responses such as to gold or selenium. Next, we summarized the environmental applications, which were developed based on the knowledge gained by studying these different determinants, and in particular biosensors and soil and water bioremediation. Finally, the general transcriptional response of C. metallidurans to sixteen different metals supplied at different concentrations (including acute stress) is discussed within the framework of its intricate regulatory network.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    ScanProsite (de Castro et al. 2006) detected 119 protein sequences with at least 2 hits for the {M-Q-G-M-D} motif on all UniProtKB/TrEMBL (release 2014_05 of 14-May-2014: 56010222 entries) database sequences.

  2. 2.

    For a general evaluation of the microbial reporters designed to assay metal bioavailability and their possible use in environmental remediation see Magrisso et al. (2008).

References

  • Aboulaich A, Tilmaciu CM, Merlin C, Mercier C, Guilloteau H, Medjahdi G, Schneider R (2012) Physicochemical properties and cellular toxicity of (poly)aminoalkoxysilanes-functionalized ZnO quantum dots. Nanotechnology 23(33):335101

    Google Scholar 

  • Ajees AA, Marapakala K, Packianathan C, Sankaran B, Rosen BP (2012) Structure of an As(III) S-adenosylmethionine methyltransferase: insights into the mechanism of arsenic biotransformation. Biochemistry 51(27):5476–5485

    CAS  Google Scholar 

  • Almendras M, Carballa M, Diels L, Vanbroekhoven K, Chamy R (2009) Prediction of heavy metals mobility and bioavailability in contaminated soil using sequential extraction and biosensors. J Environ Eng 135(9):839–844

    CAS  Google Scholar 

  • Ansari AZ, Bradner JE, O’Halloran TV (1995) DNA-bend modulation in a repressor-to-activator switching mechanism. Nature 374(6520):371–375

    CAS  Google Scholar 

  • Ansari AZ, Chael ML, O’Halloran TV (1992) Allosteric underwinding of DNA is a critical step in positive control of transcription by Hg-MerR. Nature 355(6355):87–89

    CAS  Google Scholar 

  • Anton A, Grosse C, Reissmann J, Pribyl T, Nies DH (1999) CzcD is a heavy metal ion transporter involved in regulation of heavy metal resistance in Ralstonia sp. strain CH34. J Bacteriol 181(22):6876–6881

    CAS  Google Scholar 

  • Anton A, Weltrowski A, Haney CJ, Franke S, Grass G, Rensing C, Nies DH (2004) Characteristics of zinc transport by two bacterial cation diffusion facilitators from Ralstonia metallidurans CH34 and Escherichia coli. J Bacteriol 186(22):7499–7507

    CAS  Google Scholar 

  • Ash M-R, Chong LX, Maher MJ, Hinds MG, Xiao Z, Wedd AG (2011) Molecular basis of the cooperative binding of Cu(I) and Cu(II) to the CopK protein from Cupriavidus metallidurans CH34. Biochemistry 50:9237–9247

    CAS  Google Scholar 

  • Auquier V (2006) Identification et caractérisation de protéines membranaires impliquées dans les systèmes de résistance aux métaux lourds chez Cupriavidus metallidurans CH34. Université Libre de Bruxelles, Brussels, Belgium

    Google Scholar 

  • Avoscan L, Carrière M, Proux O, Sarret G, Degrouard J, Covès J, Gouget B (2009) Enhanced selenate accumulation in Cupriavidus metallidurans CH34 does not trigger a detoxification pathway. Appl Environ Microbiol 75(7):2250–2252

    CAS  Google Scholar 

  • Avoscan L, Collins R, Carrière M, Gouget B, Covès J (2006) Seleno-L-methionine is the predominant organic form of selenium in Cupriavidus metallidurans CH34 exposed to selenite or selenate. Appl Environ Microbiol 72(9):6414–6416

    CAS  Google Scholar 

  • Barkay T, Miller SM, Summers AO (2003) Bacterial mercury resistance from atoms to ecosystems. FEMS Microbiol Rev 27(2–3):355–384

    CAS  Google Scholar 

  • Bersch B, Derfoufi KM, De Angelis F, Auquier V, Ekende EN, Mergeay M, Ruysschaert JM, Vandenbussche G (2011) Structural and metal binding characterization of the C-terminal metallochaperone domain of membrane fusion protein SilB from Cupriavidus metallidurans CH34. Biochemistry 50(12):2194–2204

    CAS  Google Scholar 

  • Bersch B, Favier A, Schanda P, van Aelst S, Vallaeys T, Covès J, Mergeay M, Wattiez R (2008) Molecular structure and metal-binding properties of the periplasmic CopK protein expressed in Cupriavidus metallidurans CH34 during copper challenge. J Mol Biol 380(2):386–403

    CAS  Google Scholar 

  • Bondarczuk K, Piotrowska-Seget Z (2013) Molecular basis of active copper resistance mechanisms in Gram-negative bacteria. Cell Biol Toxicol 29(6):397–405

    CAS  Google Scholar 

  • Borremans B, Hobman JL, Provoost A, Brown NL, Van der Lelie D (2001) Cloning and functional analysis of the pbr lead resistance determinant of Ralstonia metallidurans CH34. J Bacteriol 183(19):5651–5658

    CAS  Google Scholar 

  • Boughner LA, Doerrler WT (2012) Multiple deletions reveal the essentiality of the DedA membrane protein family in Escherichia coli. Microbiology 158(Pt 5):1162–1171

    CAS  Google Scholar 

  • Boyd ES, Barkay T (2012) The mercury resistance operon: from an origin in a geothermal environment to an efficient detoxification machine. Front Microbiol 3:349

    Google Scholar 

  • Brown NL, Stoyanov JV, Kidd SP, Hobman JL (2003) The MerR family of transcriptional regulators. FEMS Microbiol Rev 27(2–3):145–163

    CAS  Google Scholar 

  • Champier L, Duarte V, Michaud-Soret I, Covès J (2004) Characterization of the MerD protein from Ralstonia metallidurans CH34: a possible role in bacterial mercury resistance by switching off the induction of the mer operon. Mol Microbiol 52(5):1475–1485

    CAS  Google Scholar 

  • Changela A, Chen K, Xue Y, Holschen J, Outten CE, O’Halloran TV, Mondragon A (2003) Molecular basis of metal-ion selectivity and zeptomolar sensitivity by CueR. Science 301(5638):1383–1387

    CAS  Google Scholar 

  • Chen P, Greenberg B, Taghavi S, Romano C, van der Lelie D, He C (2005) An exceptionally selective lead(II)-regulatory protein from Ralstonia metallidurans: development of a fluorescent lead(II) probe. Angew Chem Int Ed Engl 44(18):2715–2719

    CAS  Google Scholar 

  • Chen PR, Wasinger EC, Zhao J, van der Lelie D, Chen LX, He C (2007) Spectroscopic insights into lead(II) coordination by the selective lead(II)-binding protein PbrR691. J Am Chem Soc 129(41):12350–12351

    CAS  Google Scholar 

  • Chiu TY, Yang DM (2012) Intracellular Pb2+ content monitoring using a protein-based Pb2+ indicator. Toxicol Sci 126(2):436–445

    CAS  Google Scholar 

  • Chong LX, Ash MR, Maher MJ, Hinds MG, Xiao ZG, Wedd AG (2009) Unprecedented binding cooperativity between Cu(I) and Cu(II) in the copper resistance protein CopK from Cupriavidus metallidurans CH34: implications from structural studies by NMR spectroscopy and X-Ray crystallography. J Am Chem Soc 131(10):3549–3564

    CAS  Google Scholar 

  • Collard JM, Corbisier P, Diels L, Dong Q, Jeanthon C, Mergeay M, Taghavi S, van der Lelie D, Wilmotte A, Wuertz S (1994) Plasmids for heavy metal resistance in Alcaligenes eutrophus CH34: mechanisms and applications. FEMS Microbiol Rev 14(4):405–414

    CAS  Google Scholar 

  • Collard JM, Provoost A, Taghavi S, Mergeay M (1993) A new type of Alcaligenes eutrophus CH34 zinc resistance generated by mutations affecting regulation of the cnr cobalt-nickel resistance system. J Bacteriol 175(3):779–784

    CAS  Google Scholar 

  • Colombo MJ, Ha J, Reinfelder JR, Barkay T, Yee N (2014) Oxidation of Hg(0) to Hg(II) by diverse anaerobic bacteria. Chem Geol 363:334–340

    CAS  Google Scholar 

  • Corbisier P, Diels L, Mergeay M (2002) Fused genes and their use for determining the presence of metals or of xenobiotic compounds. Patent EP0573500/US 5786162 A

    Google Scholar 

  • Corbisier P, Thiry E, Diels L (1996) Bacterial biosensors for the toxicity assessment of solid wastes. Environ Toxicol Water Qual 11(3):171–177

    CAS  Google Scholar 

  • Corbisier P, van der Lelie D, Borremans B, Provoost A, de Lorenzo V, Brown NL, Lloyd JR, Hobman JL, Csoregi E, Johansson G, Mattiasson B (1999) Whole cell- and protein-based biosensors for the detection of bioavailable heavy metals in environmental samples. Anal Chim Acta 387(3):235–244

    CAS  Google Scholar 

  • Crooks GE, Hon G, Chandonia JM, Brenner SE (2004) WebLogo: a sequence logo generator. Genome Res 14(6):1188–1190

    CAS  Google Scholar 

  • Crossman LC, Chaudhuri RR, Beatson SA, Wells TJ, Desvaux M, Cunningham AF, Petty NK, Mahon V, Brinkley C, Hobman JL, Savarino SJ, Turner SM, Pallen MJ, Penn CW, Parkhill J, Turner AK, Johnson TJ, Thomson NR, Smith SG, Henderson IR (2010) A commensal gone bad: complete genome sequence of the prototypical enterotoxigenic Escherichia coli strain H10407. J Bacteriol 192(21):5822–5831

    CAS  Google Scholar 

  • de Castro E, Sigrist CJ, Gattiker A, Bulliard V, Langendijk-Genevaux PS, Gasteiger E, Bairoch A, Hulo N (2006) ScanProsite: detection of PROSITE signature matches and ProRule-associated functional and structural residues in proteins. Nucleic Acids Res 34 (Web Server issue):W362–W365

    Google Scholar 

  • Debut AJ, Dumay QC, Barabote RD, Saier MH Jr (2006) The iron/lead transporter superfamily of Fe/Pb2+ uptake systems. J Mol Microbiol Biotechnol 11(1–2):1–9

    CAS  Google Scholar 

  • Diaz-Perez C, Cervantes C, Campos-Garcia J, Julian-Sanchez A, Riveros-Rosas H (2007) Phylogenetic analysis of the chromate ion transporter (CHR) superfamily. FEBS J 274(23):6215–6227

    CAS  Google Scholar 

  • Diels L, De Smet M, Hooyberghs L, Corbisier P (1999) Heavy metals bioremediation of soil. Mol Biotechnol 12(2):149–158

    CAS  Google Scholar 

  • Diels L, Dong QH, van der Lelie D, Baeyens W, Mergeay M (1995a) The czc operon of Alcaligenes eutrophus CH34: from resistance mechanism to the removal of heavy metals. J Ind Microbiol 14(2):142–153

    CAS  Google Scholar 

  • Diels L, Van Roy S, Leysen R, Mergeay M (1996) Heavy metal bioprecipitation by Alcaligenes eutrophus CH34 immobilized in a membrane bioreactor. Int Biodeter Biodegr 37(3–4):239

    Google Scholar 

  • Diels L, Van Roy S, Somers K, Willems I, Doyen W, Mergeay M, Springael D, Leysen R (1995b) The use of bacteria immobilized in tubular membrane reactors for heavy metal recovery and degradation of chlorinated aromatics. J Membr Sci 100(3):249–258

    CAS  Google Scholar 

  • Diels L, Van Roy S, Taghavi S, Van Houdt R (2009) From industrial sites to environmental applications with Cupriavidus metallidurans. Anton Leeuw Int J G 96(2):247–258

    Google Scholar 

  • Djoko KY, Xiao Z, Wedd AG (2008) Copper resistance in E. coli: the multicopper oxidase PcoA catalyzes oxidation of copper(I) in Cu(I)Cu(II)-PcoC. ChemBioChem 9(10):1579–1582

    CAS  Google Scholar 

  • Doerrler WT, Sikdar R, Kumar S, Boughner LA (2013) New functions for the ancient DedA membrane protein family. J Bacteriol 195(1):3–11

    CAS  Google Scholar 

  • Dressler C, Kues U, Nies DH, Friedrich B (1991) Determinants encoding resistance to several heavy metals in newly isolated copper-resistant bacteria. Appl Environ Microbiol 57(11):3079–3085

    CAS  Google Scholar 

  • Essa AM, Julian DJ, Kidd SP, Brown NL, Hobman JL (2003) Mercury resistance determinants related to Tn21, Tn1696, and Tn5053 in enterobacteria from the preantibiotic era. Antimicrob Agents Chemother 47(3):1115–1119

    CAS  Google Scholar 

  • Fairbrother L, Etschmann B, Brugger J, Shapter J, Southam G, Reith F (2013) Biomineralization of gold in biofilms of Cupriavidus metallidurans. Environ Sci Technol 47(6):2628–2635

    CAS  Google Scholar 

  • Frantz B, O’Halloran TV (1990) DNA distortion accompanies transcriptional activation by the metal-responsive gene-regulatory protein MerR. Biochemistry 29(20):4747–4751

    CAS  Google Scholar 

  • Garcia-Dominguez M, Lopez-Maury L, Florencio FJ, Reyes JC (2000) A gene cluster involved in metal homeostasis in the cyanobacterium Synechocystis sp. strain PCC 6803. J Bacteriol 182(6):1507–1514

    CAS  Google Scholar 

  • Geebelen W, Adriano DC, van der Lelie D, Mench M, Carleer R, Clijsters H, Vangronsveld J (2003) Selected bioavailability assays to test the efficacy of amendment-induced immobilization of lead in soils. Plant Soil 249(1):217–228

    CAS  Google Scholar 

  • Gilis A, Corbisier P, Baeyens W, Taghavi S, Mergeay M, van der Lelie D (1998) Effect of the siderophore alcaligin E on the bioavailability of Cd to Alcaligenes eutrophus CH34. J Ind Microbiol Biotechnol 20(1):61–68

    CAS  Google Scholar 

  • Gilis A, Khan MA, Cornelis P, Meyer JM, Mergeay M, van der Lelie D (1996) Siderophore-mediated iron uptake in Alcaligenes eutrophus CH34 and identification of aleB encoding the ferric iron-alcaligin E receptor. J Bacteriol 178(18):5499–5507

    CAS  Google Scholar 

  • Gilmour MW, Thomson NR, Sanders M, Parkhill J, Taylor DE (2004) The complete nucleotide sequence of the resistance plasmid R478: defining the backbone components of incompatibility group H conjugative plasmids through comparative genomics. Plasmid 52(3):182–202

    CAS  Google Scholar 

  • Goldberg M, Pribyl T, Juhnke S, Nies DH (1999) Energetics and topology of CzcA, a cation/proton antiporter of the resistance-nodulation-cell division protein family. J Biol Chem 274(37):26065–26070

    CAS  Google Scholar 

  • Grass G, Fan B, Rosen BP, Lemke K, Schlegel HG, Rensing C (2001) NreB from Achromobacter xylosoxidans 31A Is a nickel-induced transporter conferring nickel resistance. J Bacteriol 183(9):2803–2807

    CAS  Google Scholar 

  • Grass G, Grosse C, Nies DH (2000) Regulation of the cnr cobalt and nickel resistance determinant from Ralstonia sp. strain CH34. J Bacteriol 182(5):1390–1398

    CAS  Google Scholar 

  • Grinsted J, de la Cruz F, Schmitt R (1990) The Tn21 subgroup of bacterial transposable elements. Plasmid 24(3):163–189

    CAS  Google Scholar 

  • Grosse C, Anton A, Hoffmann T, Franke S, Schleuder G, Nies DH (2004) Identification of a regulatory pathway that controls the heavy-metal resistance system Czc via promoter czcNp in Ralstonia metallidurans. Arch Microbiol 182(2–3):109–118

    CAS  Google Scholar 

  • Grosse C, Friedrich S, Nies DH (2007) Contribution of extracytoplasmic function sigma factors to transition metal homeostasis in Cupriavidus metallidurans strain CH34. J Mol Microbiol Biotechnol 12(3–4):227–240

    CAS  Google Scholar 

  • Grosse C, Grass G, Anton A, Franke S, Santos AN, Lawley B, Brown NL, Nies DH (1999) Transcriptional organization of the czc heavy-metal homeostasis determinant from Alcaligenes eutrophus. J Bacteriol 181(8):2385–2393

    CAS  Google Scholar 

  • Haritha A, Sagar KP, Tiwari A, Kiranmayi P, Rodrigue A, Mohan PM, Singh SS (2009) MrdH, a novel metal resistance determinant of Pseudomonas putida KT2440, is flanked by metal-inducible mobile genetic elements. J Bacteriol 191(19):5976–5987

    CAS  Google Scholar 

  • Harms H (2007) Biosensing of Heavy Metals. In: Nies D, Silver S (eds) Molecular microbiology of heavy metals, vol 6., Microbiology monographsSpringer, Berlin, pp 143–157

    Google Scholar 

  • Heijerick DG, Janssen CR, Karlen C, Wallinder IO, Leygraf C (2002) Bioavailability of zinc in runoff water from roofing materials. Chemosphere 47(10):1073–1080

    CAS  Google Scholar 

  • Helmann JD, Ballard BT, Walsh CT (1990) The MerR metalloregulatory protein binds mercuric ion as a tricoordinate, metal-bridged dimer. Science 247(4945):946–948

    CAS  Google Scholar 

  • Heltzel A, Lee IW, Totis PA, Summers AO (1990) Activator-dependent preinduction binding of sigma-70 RNA polymerase at the metal-regulated mer promoter. Biochemistry 29(41):9572–9584

    CAS  Google Scholar 

  • Henne KL, Nakatsu CH, Thompson DK, Konopka AE (2009a) High-level chromate resistance in Arthrobacter sp. strain FB24 requires previously uncharacterized accessory genes. BMC Microbiol 9:199

    Google Scholar 

  • Henne KL, Turse JE, Nicora CD, Lipton MS, Tollaksen SL, Lindberg C, Babnigg G, Giometti CS, Nakatsu CH, Thompson DK, Konopka AE (2009b) Global proteomic analysis of the chromate response in Arthrobacter sp. strain FB24. J Proteome Res 8(4):1704–1716

    CAS  Google Scholar 

  • Herzberg M, Bauer L, Nies DH (2014a) Deletion of the zupT gene for a zinc importer influences zinc pools in Cupriavidus metallidurans CH34. Metallomics 6(3):421–436

    CAS  Google Scholar 

  • Herzberg M, Dobritzsch D, Helm S, Baginsky S, Nies DH (2014b) The zinc repository of Cupriavidus metallidurans. Metallomics 6(11):2157–2165

    CAS  Google Scholar 

  • Hobman J, Kholodii G, Nikiforov V, Ritchie DA, Strike P, Yurieva O (1994) The sequence of the mer operon of pMER327/419 and transposon ends of pMER327/419, 330 and 05. Gene 146(1):73–78

    CAS  Google Scholar 

  • Hobman JL (2007) MerR family transcription activators: similar designs, different specificities. Mol Microbiol 63(5):1275–1278

    CAS  Google Scholar 

  • Hobman JL, Crossman L (2015) Bacterial antimicrobial metal ion resistance. J Med Microbiol 64:471–497

    Google Scholar 

  • Hobman JL, Julian DJ, Brown NL (2012) Cysteine coordination of Pb(II) is involved in the PbrR-dependent activation of the lead-resistance promoter, PpbrA, from Cupriavidus metallidurans CH34. BMC Microbiol 12:109

    CAS  Google Scholar 

  • Hobman JL, Wilkie J, Brown NL (2005) A design for life: prokaryotic metal-binding MerR family regulators. Biometals 18(4):429–436

    CAS  Google Scholar 

  • Hobman JL, Yamamoto K, Oshima T (2007) Transcriptomic responses of bacterial cells to sublethal metal ion stress. In: Nies D, Silver S (eds) Molecular microbiology of heavy metals, vol 6., Microbiology monographsSpringer, Berlin, pp 73–115

    Google Scholar 

  • Hynninen A, Touze T, Pitkanen L, Mengin-Lecreulx D, Virta M (2009) An efflux transporter PbrA and a phosphatase PbrB cooperate in a lead-resistance mechanism in bacteria. Mol Microbiol 74(2):384–394

    CAS  Google Scholar 

  • Janssen PJ, Van Houdt R, Moors H, Monsieurs P, Morin N, Michaux A, Benotmane MA, Leys N, Vallaeys T, Lapidus A, Monchy S, Médigue C, Taghavi S, McCorkle S, Dunn J, van der Lelie D, Mergeay M (2010) The complete genome sequence of Cupriavidus metallidurans strain CH34, a master survivalist in harsh and anthropogenic environments. PLoS ONE 5(5):e10433

    Google Scholar 

  • Jia S, Wang Z, Zhang XX, Liu B, Li W, Cheng S (2013) Metagenomic analysis of cadmium and copper resistance genes in activated sludge of a tannery wastewater treatment plant. J Environ Biol 34:375–380

    Google Scholar 

  • Jian X, Wasinger EC, Lockard JV, Chen LX, He C (2009) Highly sensitive and selective gold(I) recognition by a metalloregulator in Ralstonia metallidurans. J Am Chem Soc 131(31):10869–10871

    CAS  Google Scholar 

  • Juhnke S, Peitzsch N, Hubener N, Grosse C, Nies DH (2002) New genes involved in chromate resistance in Ralstonia metallidurans strain CH34. Arch Microbiol 179(1):15–25

    CAS  Google Scholar 

  • Julian DJ, Kershaw CJ, Brown NL, Hobman JL (2009) Transcriptional activation of MerR family promoters in Cupriavidus metallidurans CH34. Anton Leeuw Int J G 96(2):149–159

    CAS  Google Scholar 

  • Kaur A, Pan M, Meislin M, Facciotti MT, El-Gewely R, Baliga NS (2006) A systems view of haloarchaeal strategies to withstand stress from transition metals. Genome Res 16(7):841–854

    CAS  Google Scholar 

  • Kholodii G, Mindlin S, Petrova M, Minakhina S (2003) Tn5060 from the Siberian permafrost is most closely related to the ancestor of Tn21 prior to integron acquisition. FEMS Microbiol Lett 226(2):251–255

    CAS  Google Scholar 

  • Kirsten A, Herzberg M, Voigt A, Seravalli J, Grass G, Scherer J, Nies DH (2011) Contributions of five secondary metal uptake systems to metal homeostasis of Cupriavidus metallidurans CH34. J Bacteriol 193(18):4652–4663

    CAS  Google Scholar 

  • Kitts P, Symington L, Burke M, Reed R, Sherratt D (1982) Transposon-specified site-specific recombination. Proc Natl Acad Sci USA 79(1):46–50

    CAS  Google Scholar 

  • Kiyono M, Sone Y, Nakamura R, Pan-Hou H, Sakabe K (2009) The MerE protein encoded by transposon Tn21 is a broad mercury transporter in Escherichia coli. FEBS Lett 583(7):1127–1131

    CAS  Google Scholar 

  • Klockgether J, Wurdemann D, Reva O, Wiehlmann L, Tummler B (2007) Diversity of the abundant pKLC102/PAGI-2 family of genomic islands in Pseudomonas aeruginosa. J Bacteriol 189(6):2443–2459

    CAS  Google Scholar 

  • Lafrance-Vanasse J, Lefebvre M, Di Lello P, Sygusch J, Omichinski JG (2009) Crystal structures of the organomercurial lyase MerB in its free and mercury-bound forms: insights into the mechanism of methylmercury degradation. J Biol Chem 284(2):938–944

    CAS  Google Scholar 

  • Ledgham F, Quest B, Vallaeys T, Mergeay M, Covès J (2005) A probable link between the DedA protein and resistance to selenite. Res Microbiol 156(3):367–374

    CAS  Google Scholar 

  • Legatzki A, Franke S, Lucke S, Hoffmann T, Anton A, Neumann D, Nies DH (2003a) First step towards a quantitative model describing Czc-mediated heavy metal resistance in Ralstonia metallidurans. Biodegradation 14(2):153–168

    CAS  Google Scholar 

  • Legatzki A, Grass G, Anton A, Rensing C, Nies DH (2003b) Interplay of the Czc system and two P-type ATPases in conferring metal resistance to Ralstonia metallidurans. J Bacteriol 185(15):4354–4361

    CAS  Google Scholar 

  • Li LG, Cai L, Zhang T (2013) Genome of Cupriavidus sp. HMR-1, a Heavy Metal-Resistant Bacterium. Genome Announc 1(1):e00202–e00212

    Google Scholar 

  • Liebert CA, Hall RM, Summers AO (1999) Transposon Tn21, flagship of the floating genome. Microbiol Mol Biol Rev 63(3):507–522

    CAS  Google Scholar 

  • Liesegang H, Lemke K, Siddiqui RA, Schlegel HG (1993) Characterization of the inducible nickel and cobalt resistance determinant cnr from pMOL28 of Alcaligenes eutrophus CH34. J Bacteriol 175(3):767–778

    CAS  Google Scholar 

  • Lodewyckx C, Taghavi S, Mergeay M, Vangronsveld J, Clijsters H, van der Lelie D (2001) The effect of recombinant heavy metal-resistant endophytic bacteria on heavy metal uptake by their host plant. Int J Phytoremediat 3(2):173–187

    CAS  Google Scholar 

  • Magrisso S, Erel Y, Belkin S (2008) Microbial reporters of metal bioavailability. Microb Biotechnol 1(4):320–330

    CAS  Google Scholar 

  • Maillard AP, Girard E, Ziani W, Petit-Hartlein I, Kahn R, Covès J (2014) The crystal structure of the anti-sigma factor CnrY in complex with the sigma factor CnrH shows a new structural class of anti-sigma factors targeting extracytoplasmic function sigma factors. J Mol Biol 426(12):2313–2327

    CAS  Google Scholar 

  • Margesin R, Schinner F (1997) Heavy metal resistant Arthrobacter sp.—a tool for studying conjugational plasmid transfer between gram-negative and gram-positive bacteria. J Basic Microbiol 37(3):217–227

    CAS  Google Scholar 

  • Marrero K, Sanchez A, Gonzalez LJ, Ledon T, Rodriguez-Ulloa A, Castellanos-Serra L, Perez C, Fando R (2012) Periplasmic proteins encoded by VCA0261-0260 and VC2216 genes together with copA and cueR products are required for copper tolerance but not for virulence in Vibrio cholerae. Microbiology 158(Pt 8):2005–2016

    CAS  Google Scholar 

  • Melnick JG, Parkin G (2007) Cleaving mercury-alkyl bonds: a functional model for mercury detoxification by MerB. Science 317(5835):225–227

    CAS  Google Scholar 

  • Mergeay M (1995) Heavy metal resistances in microbial ecosystems. In: Akkermans ADL, Van Elsas JD, De Bruijn FJ (eds) Molecular microbial ecology manual. Springer, The Netherlands, pp 439–455

    Google Scholar 

  • Mergeay M, Gerits J, Houba C (1978a) Transmissible resistance factor to cobalt in a hydrogen-utilizing Pseudomonas. C R Seances Soc Biol Fil 172(3):575–579

    CAS  Google Scholar 

  • Mergeay M, Houba C, Gerits J (1978b) Extrachromosomal inheritance controlling resistance to cadmium, cobalt, copper and zinc ions: evidence from curing a Pseudomonas. Arch Int Physiol Biochim Biophys 86(2):440–442

    CAS  Google Scholar 

  • Mergeay M, Monchy S, Janssen P, Van Houdt R, Leys N (2009) Megaplasmids in Cupriavidus genus and metal resistance. In: Schwartz E (ed) Microbial megaplasmids, vol 11., Microbiology monographsSpringer, Berlin, pp 209–238

    Google Scholar 

  • Mergeay M, Monchy S, Vallaeys T, Auquier V, Benotmane A, Bertin P, Taghavi S, Dunn J, van der Lelie D, Wattiez R (2003) Ralstonia metallidurans, a bacterium specifically adapted to toxic metals: towards a catalogue of metal-responsive genes. FEMS Microbiol Rev 27(2–3):385–410

    CAS  Google Scholar 

  • Mergeay M, Nies D, Schlegel HG, Gerits J, Charles P, Van Gijsegem F (1985) Alcaligenes eutrophus CH34 is a facultative chemolithotroph with plasmid-bound resistance to heavy metals. J Bacteriol 162(1):328–334

    CAS  Google Scholar 

  • Mijnendonckx K, Provoost A, Ott CM, Venkateswaran K, Mahillon J, Leys N, Van Houdt R (2013) Characterization of the survival ability of Cupriavidus metallidurans and Ralstonia pickettii from space-related environments. Microb Ecol 65(2):347–360

    CAS  Google Scholar 

  • Mikolay A, Nies DH (2009) The ABC-transporter AtmA is involved in nickel and cobalt resistance of Cupriavidus metallidurans strain CH34. Anton Leeuw Int J G 96(2):183–191

    CAS  Google Scholar 

  • Mindlin S, Petrova M (2013) Mercury resistance transposons. In: Roberts AP, Mullany P (eds) Bacterial integrative mobile genetic elements. Landes Biosciences, Austin, USA, pp 33–52

    Google Scholar 

  • Monchy S, Benotmane MA, Janssen P, Vallaeys T, Taghavi S, van der Lelie D, Mergeay M (2007) Plasmids pMOL28 and pMOL30 of Cupriavidus metallidurans are specialized in the maximal viable response to heavy metals. J Bacteriol 189(20):7417–7425

    CAS  Google Scholar 

  • Monchy S, Benotmane MA, Wattiez R, van Aelst S, Auquier V, Borremans B, Mergeay M, Taghavi S, van der Lelie D, Vallaeys T (2006a) Transcriptomic and proteomic analyses of the pMOL30-encoded copper resistance in Cupriavidus metallidurans strain CH34. Microbiology 152(Pt 6):1765–1776

    CAS  Google Scholar 

  • Monchy S, Vallaeys T, Bossus A, Mergeay M (2006b) Metal transport ATPase genes from Cupriavidus metallidurans CH34: a transcriptomic approach. Int J Environ Anal Chem 86(9):677–692

    CAS  Google Scholar 

  • Monsieurs P, Mijnendonckx K, Provoost A, Venkateswaran K, Ott CM, Leys N, Van Houdt R (2014) Genome sequences of Cupriavidus metallidurans strains NA1, NA4, and NE12, isolated from space equipment. Genome Announc 2(4):e00719–e00714

    Google Scholar 

  • Monsieurs P, Moors H, Van Houdt R, Janssen PJ, Janssen A, Coninx I, Mergeay M, Leys N (2011) Heavy metal resistance in Cupriavidus metallidurans CH34 is governed by an intricate transcriptional network. Biometals 24(6):1133–1151

    CAS  Google Scholar 

  • Monsieurs P, Provoost A, Mijnendonckx K, Leys N, Gaudreau C, Van Houdt R (2013) Genome sequence of Cupriavidus metallidurans Strain H1130, isolated from an invasive human infection. Genome Announc 1(6):e01051–e01013

    Google Scholar 

  • Morby AP, Hobman JL, Brown NL (1995) The role of cysteine residues in the transport of mercuric ions by the Tn501 MerT and MerP mercury-resistance proteins. Mol Microbiol 17(1):25–35

    CAS  Google Scholar 

  • Munkelt D, Grass G, Nies DH (2004) The chromosomally encoded cation diffusion facilitator proteins DmeF and FieF from Wautersia metallidurans CH34 are transporters of broad metal specificity. J Bacteriol 186(23):8036–8043

    CAS  Google Scholar 

  • Munzinger M, Taraz K, Budzikiewicz H (1999) Staphyloferrin B, a citrate siderophore of Ralstonia eutropha. Zeitschrift Fur Naturforschung C-a J Biosci 54(11):867–875

    CAS  Google Scholar 

  • Newcombe DA, La Duc MT, Vaishampayan P, Venkateswaran K (2008) Impact of assembly, testing and launch operations on the airborne bacterial diversity within a spacecraft assembly facility clean-room. Int J Astrobiol 7(3 & 4):223–236

    Google Scholar 

  • Ngonlong Ekendé EC (2012) Towards a better understanding of bacterial resistance to heavy metal ions: the case of the Sil and Zne systems from Cupriavidus metallidurans CH34. Université Libre de Bruxelles, Brussels, Belgium

    Google Scholar 

  • Nies A, Nies DH, Silver S (1989a) Cloning and expression of plasmid genes encoding resistances to chromate and cobalt in Alcaligenes eutrophus. J Bacteriol 171(9):5065–5070

    CAS  Google Scholar 

  • Nies D, Mergeay M, Friedrich B, Schlegel HG (1987) Cloning of plasmid genes encoding resistance to cadmium, zinc, and cobalt in Alcaligenes eutrophus CH34. J Bacteriol 169(10):4865–4868

    CAS  Google Scholar 

  • Nies DH (1992) CzcR and CzcD, gene products affecting regulation of resistance to cobalt, zinc, and cadmium (czc system) in Alcaligenes eutrophus. J Bacteriol 174(24):8102–8110

    CAS  Google Scholar 

  • Nies DH (1995) The cobalt, zinc, and cadmium efflux system CzcABC from Alcaligenes eutrophus functions as a cation-proton antiporter in Escherichia coli. J Bacteriol 177(10):2707–2712

    CAS  Google Scholar 

  • Nies DH (2000) Heavy metal-resistant bacteria as extremophiles: molecular physiology and biotechnological use of Ralstonia sp CH34. Extremophiles 4(2):77–82

    CAS  Google Scholar 

  • Nies DH (2003) Efflux-mediated heavy metal resistance in prokaryotes. FEMS Microbiol Rev 27(2–3):313–339

    CAS  Google Scholar 

  • Nies DH (2004) Incidence and function of sigma factors in Ralstonia metallidurans and other bacteria. Arch Microbiol 181(4):255–268

    CAS  Google Scholar 

  • Nies DH (2007) Bacterial Transition Metal Homeostasis. In: Nies DH, Silver S (eds) Molecular microbiology of heavy metals, vol 6., Microbiology monographsSpringer, Berlin, pp 117–142

    Google Scholar 

  • Nies DH (2013) RND efflux pumps for metal cations. In: Yu EW, Zhang Q, Brown MH (eds) Microbial efflux pumps. Caister Academic Press, Norfolk

    Google Scholar 

  • Nies DH, Koch S, Wachi S, Peitzsch N, Saier MH Jr (1998) CHR, a novel family of prokaryotic proton motive force-driven transporters probably containing chromate/sulfate antiporters. J Bacteriol 180(21):5799–5802

    CAS  Google Scholar 

  • Nies DH, Nies A, Chu L, Silver S (1989b) Expression and nucleotide sequence of a plasmid-determined divalent cation efflux system from Alcaligenes eutrophus. Proc Natl Acad Sci USA 86(19):7351–7355

    CAS  Google Scholar 

  • Nies DH, Rehbein G, Hoffmann T, Baumann C, Grosse C (2006) Paralogs of genes encoding metal resistance proteins in Cupriavidus metallidurans strain CH34. J Mol Microbiol Biotechnol 11(1–2):82–93

    CAS  Google Scholar 

  • Nies DH, Silver S (1989) Plasmid-determined inducible efflux is responsible for resistance to cadmium, zinc, and cobalt in Alcaligenes eutrophus. J Bacteriol 171(2):896–900

    CAS  Google Scholar 

  • Nies DH, Silver S (1995) Ion efflux systems involved in bacterial metal resistances. J Ind Microbiol 14(2):186–199

    CAS  Google Scholar 

  • Ohtake H, Cervantes C, Silver S (1987) Decreased chromate uptake in Pseudomonas fluorescens carrying a chromate resistance plasmid. J Bacteriol 169(8):3853–3856

    CAS  Google Scholar 

  • Parks JM, Guo H, Momany C, Liang L, Miller SM, Summers AO, Smith JC (2009) Mechanism of Hg-C protonolysis in the organomercurial lyase MerB. J Am Chem Soc 131(37):13278–13285

    CAS  Google Scholar 

  • Partridge SR, Brown HJ, Stokes HW, Hall RM (2001) Transposons Tn1696 and Tn21 and their integrons In4 and In2 have independent origins. Antimicrob Agents Chemother 45(4):1263–1270

    CAS  Google Scholar 

  • Peitzsch N, Eberz G, Nies DH (1998) Alcaligenes eutrophus as a bacterial chromate sensor. Appl Environ Microbiol 64(2):453–458

    CAS  Google Scholar 

  • Petit-Haertlein I, Girard E, Sarret G, Hazemann JL, Gourhant P, Kahn R, Covès J (2010) Evidence for conformational changes upon copper binding to Cupriavidus metallidurans CzcE. Biochemistry 49(9):1913–1922

    CAS  Google Scholar 

  • Petrovski S, Stanisich VA (2010) Tn502 and Tn512 are res site hunters that provide evidence of resolvase-independent transposition to random sites. J Bacteriol 192(7):1865–1874

    CAS  Google Scholar 

  • Pontel LB, Audero ME, Espariz M, Checa SK, Soncini FC (2007) GolS controls the response to gold by the hierarchical induction of Salmonella-specific genes that include a CBA efflux-coding operon. Mol Microbiol 66(3):814–825

    CAS  Google Scholar 

  • Pumpel T, Macaskie LE, Finlay JA, Diels L, Tsezos M (2003) Nickel removal from nickel plating waste water using a biologically active moving-bed sand filter. Biometals 16(4):567–581

    Google Scholar 

  • Pumpel T, Paknikar KM (2001) Bioremediation technologies for metal-containing wastewaters using metabolically active microorganisms. Adv Appl Microbiol 48:135–169

    CAS  Google Scholar 

  • Qin J, Rosen BP, Zhang Y, Wang G, Franke S, Rensing C (2006) Arsenic detoxification and evolution of trimethylarsine gas by a microbial arsenite S-adenosylmethionine methyltransferase. Proc Natl Acad Sci U S A 103(7):2075–2080

    CAS  Google Scholar 

  • Reith F, Etschmann B, Grosse C, Moors H, Benotmane MA, Monsieurs P, Grass G, Doonan C, Vogt S, Lai B, Martinez-Criado G, George GN, Nies DH, Mergeay M, Pring A, Southam G, Brugger J (2009) Mechanisms of gold biomineralization in the bacterium Cupriavidus metallidurans. Proc Natl Acad Sci USA 106(42):17757–17762

    CAS  Google Scholar 

  • Reith F, Fairbrother L, Nolze G, Wilhelmi O, Clode PL, Gregg A, Parsons JE, Wakelin SA, Pring A, Hough R, Southam G, Brugger J (2010) Nanoparticle factories: biofilms hold the key to gold dispersion and nugget formation. Geology 38(9):843–846

    CAS  Google Scholar 

  • Reith F, Rogers SL, McPhail DC, Webb D (2006) Biomineralization of gold: biofilms on bacterioform gold. Science 313(5784):233–236

    CAS  Google Scholar 

  • Rensing C, Grass G (2003) Escherichia coli mechanisms of copper homeostasis in a changing environment. FEMS Microbiol Rev 27(2–3):197–213

    CAS  Google Scholar 

  • Rensing C, Pribyl T, Nies DH (1997) New functions for the three subunits of the CzcCBA cation-proton antiporter. J Bacteriol 179(22):6871–6879

    CAS  Google Scholar 

  • Rojas LA, Yanez C, Gonzalez M, Lobos S, Smalla K, Seeger M (2011) Characterization of the metabolically modified heavy metal-resistant Cupriavidus metallidurans strain MSR33 generated for mercury bioremediation. PLoS ONE 6(3):e17555

    CAS  Google Scholar 

  • Rossy E, Champier L, Bersch B, Brutscher B, Blackledge M, Covès J (2004a) Biophysical characterization of the MerP-like amino-terminal extension of the mercuric reductase from Ralstonia metallidurans CH34. J Biol Inorg Chem 9(1):49–58

    CAS  Google Scholar 

  • Rossy E, Seneque O, Lascoux D, Lemaire D, Crouzy S, Delangle P, Covès J (2004b) Is the cytoplasmic loop of MerT, the mercuric ion transport protein, involved in mercury transfer to the mercuric reductase? FEBS Lett 575(1–3):86–90

    CAS  Google Scholar 

  • Roux M, Covès J (2002) The iron-containing superoxide dismutase of Ralstonia metallidurans CH34. FEMS Microbiol Lett 210(1):129–133

    CAS  Google Scholar 

  • Roux M, Sarret G, Pignot-Paintrand I, Fontecave M, Covès J (2001) Mobilization of selenite by Ralstonia metallidurans CH34. Appl Environ Microbiol 67(2):769–773

    CAS  Google Scholar 

  • Ryan MP, Pembroke JT, Adley CC (2009) Novel Tn4371-ICE like element in Ralstonia pickettii and genome mining for comparative elements. BMC Microbiol 9:242

    Google Scholar 

  • Saiki M, Lowe TP (1987) Selenium in aquatic organisms from subsurface agricultural drainage water, San Joaquin Valley, California. Arch Environ Contam Toxicol 16(6):657–670

    CAS  Google Scholar 

  • San Martin-Uriz P, Mirete S, Alcolea PJ, Gomez MJ, Amils R, Gonzalez-Pastor JE (2014) Nickel-resistance determinants in Acidiphilium sp. PM identified by genome-wide functional screening. PLoS One 9(4):e95041

    Google Scholar 

  • Sanchez-Riego AM, Lopez-Maury L, Florencio FJ (2014) Genomic responses to arsenic in the cyanobacterium Synechocystis sp. PCC 6803. PLoS ONE 9(5):e96826

    Google Scholar 

  • Sandegren L, Linkevicius M, Lytsy B, Melhus A, Andersson DI (2012) Transfer of an Escherichia coli ST131 multiresistance cassette has created a Klebsiella pneumoniae-specific plasmid associated with a major nosocomial outbreak. J Antimicrob Chemother 67(1):74–83

    CAS  Google Scholar 

  • Sarret G, Avoscan L, Carriere M, Collins R, Geoffroy N, Carrot F, Covès J, Gouget B (2005) Chemical forms of selenium in the metal-resistant bacterium Ralstonia metallidurans CH34 exposed to selenite and selenate. Appl Environ Microbiol 71(5):2331–2337

    CAS  Google Scholar 

  • Sarret G, Favier A, Covès J, Hazemann JL, Mergeay M, Bersch B (2010) CopK from Cupriavidus metallidurans CH34 binds Cu(I) in a tetrathioether site: characterization by X-ray absorption and NMR spectroscopy. J Am Chem Soc 132(11):3770–3777

    CAS  Google Scholar 

  • Schalk IJ, Hannauer M, Braud A (2011) New roles for bacterial siderophores in metal transport and tolerance. Environ Microbiol 13(11):2844–2854

    CAS  Google Scholar 

  • Scherer J, Nies DH (2009) CzcP is a novel efflux system contributing to transition metal resistance in Cupriavidus metallidurans CH34. Mol Microbiol 73(4):601–621

    CAS  Google Scholar 

  • Schmidt C, Schwarzenberger C, Grosse C, Nies DH (2014) FurC regulates expression of zupT for the central zinc importer ZupT of Cupriavidus metallidurans. J Bacteriol 196(19):3461–3471

    Google Scholar 

  • Schmidt T, Schlegel HG (1994) Combined nickel-cobalt-cadmium resistance encoded by the ncc locus of Alcaligenes xylosoxidans 31A. J Bacteriol 176(22):7045–7054

    CAS  Google Scholar 

  • Schmidt T, Stoppel RD, Schlegel HG (1991) High-level nickel resistance in Alcaligenes xylosoxydans 31A and Alcaligenes eutrophus KTO2. Appl Environ Microbiol 57(11):3301–3309

    CAS  Google Scholar 

  • Sendra V, Cannella D, Bersch B, Fieschi F, Menage S, Lascoux D, Covès J (2006) CopH from Cupriavidus metallidurans CH34. A novel periplasmic copper-binding protein. Biochemistry 45(17):5557–5566

    CAS  Google Scholar 

  • Serre L, Rossy E, Pebay-Peyroula E, Cohen-Addad C, Covès J (2004) Crystal structure of the oxidized form of the periplasmic mercury-binding protein MerP from Ralstonia metallidurans CH34. J Mol Biol 339(1):161–171

    CAS  Google Scholar 

  • Sherratt D, Arthur A, Burke M (1981) Transposon-specified, site-specific recombination systems. Cold Spring Harb Symp Quant Biol 45(Pt 1):275–281

    CAS  Google Scholar 

  • Shewchuk LM, Helmann JD, Ross W, Park SJ, Summers AO, Walsh CT (1989a) Transcriptional switching by the MerR protein: activation and repression mutants implicate distinct DNA and mercury(II) binding domains. Biochemistry 28(5):2340–2344

    CAS  Google Scholar 

  • Shewchuk LM, Verdine GL, Nash H, Walsh CT (1989b) Mutagenesis of the cysteines in the metalloregulatory protein MerR indicates that a metal-bridged dimer activates transcription. Biochemistry 28(15):6140–6145

    CAS  Google Scholar 

  • Shewchuk LM, Verdine GL, Walsh CT (1989c) Transcriptional switching by the metalloregulatory MerR protein: initial characterization of DNA and mercury (II) binding activities. Biochemistry 28(5):2331–2339

    CAS  Google Scholar 

  • Siddiqui RA, Benthin K, Schlegel HG (1989) Cloning of pMOL28-encoded nickel resistance genes and expression of the genes in Alcaligenes eutrophus and Pseudomonas spp. J Bacteriol 171(9):5071–5078

    CAS  Google Scholar 

  • Siddiqui RA, Schlegel HG (1987) Plasmid pMOL28-mediated inducible nickel resistance in Alcaligenes eutrophus strain CH34. FEMS Microbiol Lett 43(1):9–13

    CAS  Google Scholar 

  • Silver S, Hobman JL (2007) Mercury microbiology: resistance systems, environmental aspects, methylation, and human health. In: Nies DH, Silver S (eds) Molecular microbiology of heavy metals, vol 6., Microbiology monographsSpringer, Berlin, pp 357–370

    Google Scholar 

  • Silver S, Phung LT (1996) Bacterial heavy metal resistance: new surprises. Annu Rev Microbiol 50:753–789

    CAS  Google Scholar 

  • Smets BF, Morrow JB, Pinedo CA (2003) Plasmid introduction in metal-stressed, subsurface-derived microcosms: plasmid fate and community response. Appl Environ Microbiol 69(7):4087–4097

    CAS  Google Scholar 

  • Sone Y, Nakamura R, Pan-Hou H, Itoh T, Kiyono M (2013a) Role of MerC, MerE, MerF, MerT, and/or MerP in resistance to mercurials and the transport of mercurials in Escherichia coli. Biol Pharm Bull 36(11):1835–1841

    CAS  Google Scholar 

  • Sone Y, Nakamura R, Pan-Hou H, Sato MH, Itoh T, Kiyono M (2013b) Increase methylmercury accumulation in Arabidopsis thaliana expressing bacterial broad-spectrum mercury transporter MerE. AMB Express 3(1):52

    Google Scholar 

  • Stoppel RD, Schlegel HG (1995) Nickel-resistant bacteria from anthropogenically nickel-polluted and naturally nickel-percolated ecosystems. Appl Environ Microbiol 61(6):2276–2285

    CAS  Google Scholar 

  • Stoyanov JV, Brown NL (2003) The Escherichia coli copper-responsive copA promoter is activated by gold. J Biol Chem 278(3):1407–1410

    CAS  Google Scholar 

  • Stoyanov JV, Hobman JL, Brown NL (2001) CueR (YbbI) of Escherichia coli is a MerR family regulator controlling expression of the copper exporter CopA. Mol Microbiol 39(2):502–511

    CAS  Google Scholar 

  • Taghavi S, Delanghe H, Lodewyckx C, Mergeay M, van der Lelie D (2001) Nickel-resistance-based minitransposons: new tools for genetic manipulation of environmental bacteria. Appl Environ Microbiol 67(2):1015–1019

    CAS  Google Scholar 

  • Taghavi S, Lesaulnier C, Monchy S, Wattiez R, Mergeay M, van der Lelie D (2009) Lead(II) resistance in Cupriavidus metallidurans CH34: interplay between plasmid and chromosomally-located functions. Anton Leeuw Int J G 96(2):171–182

    CAS  Google Scholar 

  • Tibazarwa C, Corbisier P, Mench M, Bossus A, Solda P, Mergeay M, Wyns L, van der Lelie D (2001) A microbial biosensor to predict bioavailable nickel in soil and its transfer to plants. Environ Pollut 113(1):19–26

    CAS  Google Scholar 

  • Tibazarwa C, Wuertz S, Mergeay M, Wyns L, van der Lelie D (2000) Regulation of the cnr cobalt and nickel resistance determinant of Ralstonia eutropha (Alcaligenes eutrophus) CH34. J Bacteriol 182(5):1399–1409

    CAS  Google Scholar 

  • Top E, Desmet I, Verstraete W, Dijkmans R, Mergeay M (1994) Exogenous isolation of mobilizing plasmids from polluted soils and sludges. Appl Environ Microbiol 60(3):831–839

    CAS  Google Scholar 

  • Top E, Mergeay M, Springael D, Verstraete W (1990) Gene escape model: transfer of heavy metal resistance genes from Escherichia coli to Alcaligenes eutrophus on agar plates and in soil samples. Appl Environ Microbiol 56(8):2471–2479

    CAS  Google Scholar 

  • Top EM, Derore H, Collard JM, Gellens V, Slobodkina G, Verstraete W, Mergeay M (1995) Retromobilization of heavy-metal resistance genes in unpolluted and heavy-metal polluted soil. FEMS Microbiol Ecol 18(3):191–203

    CAS  Google Scholar 

  • Tricot C, van Aelst S, Wattiez R, Mergeay M, Stalon V, Wouters J (2005) Overexpression, purification, crystallization and crystallographic analysis of CopK of Cupriavidus metallidurans. Acta Crystallogr, Sect F: Struct Biol Cryst Commun 61(Pt 9):825–827

    CAS  Google Scholar 

  • Utschig LM, Bryson JW, O’Halloran TV (1995) Mercury-199 NMR of the metal receptor site in MerR and its protein-DNA complex. Science 268(5209):380–385

    CAS  Google Scholar 

  • Valls M, Atrian S, de Lorenzo V, Fernandez LA (2000) Engineering a mouse metallothionein on the cell surface of Ralstonia eutropha CH34 for immobilization of heavy metals in soil. Nat Biotechnol 18(6):661–665

    CAS  Google Scholar 

  • van Aelst S (2008) Functional study of plasmid-bourne cop genes of Cupriavidus metallidurans CH34: physiological, biochemical et ecological aspects. Université Libre de Bruxelles, Brussels, Belgium

    Google Scholar 

  • Van der Auwera GA, Krol JE, Suzuki H, Foster B, Van Houdt R, Brown CJ, Mergeay M, Top EM (2009) Plasmids captured in C. metallidurans CH34: defining the PromA family of broad-host-range plasmids. Anton Leeuw Int J G 96(2):193–204

    Google Scholar 

  • van der Lelie D, Schwuchow T, Schwidetzky U, Wuertz S, Baeyens W, Mergeay M, Nies DH (1997) Two-component regulatory system involved in transcriptional control of heavy-metal homoeostasis in Alcaligenes eutrophus. Mol Microbiol 23(3):493–503

    CAS  Google Scholar 

  • van Elsas JD, Gardener BB, Wolters AC, Smit E (1998) Isolation, characterization, and transfer of cryptic gene-mobilizing plasmids in the wheat rhizosphere. Appl Environ Microbiol 64(3):880–889

    Google Scholar 

  • Van Houdt R, Monchy S, Leys N, Mergeay M (2009) New mobile genetic elements in Cupriavidus metallidurans CH34, their possible roles and occurrence in other bacteria. Anton Leeuw Int J G 96:205–226

    Google Scholar 

  • Van Houdt R, Monsieurs P, Mijnendonckx K, Provoost A, Janssen A, Mergeay M, Leys N (2012) Variation in genomic islands contribute to genome plasticity in Cupriavidus metallidurans. BMC Genom 13:111

    Google Scholar 

  • Van Houdt R, Toussaint A, Ryan MP, Pembroke JT, Mergeay M, Adley CC (2013) The Tn4371 ICE family of bacterial mobile genetic elements. In: Roberts AP, Mullany P (eds) Bacterial integrative mobile genetic elements. Landes Bioscience, Austin, pp 179–200

    Google Scholar 

  • van der Lelie D, Corbisier P, Baeyens W, Wuertz S, Diels L, Mergeay M (1994) The use of biosensors for environmental monitoring. Res Microbiol 145(1):67–74

    CAS  Google Scholar 

  • von Rozycki T, Nies DH (2009) Cupriavidus metallidurans: evolution of a metal-resistant bacterium. Anton Leeuw Int J G 96(2):115–139

    Google Scholar 

  • Waldron KJ, Robinson NJ (2009) How do bacterial cells ensure that metalloproteins get the correct metal? Nat Rev Microbiol 7(1):25–35

    CAS  Google Scholar 

  • Weyens N, Truyens S, Saenen E, Boulet J, Dupae J, Taghavi S, van der Lelie D, Carleer R, Vangronsveld J (2011) Endophytes and their potential to deal with co-contamination of organic contaminants (toluene) and toxic metals (nickel) during phytoremediation. Int J Phytorem 13(3):244–255

    CAS  Google Scholar 

  • Wiesemann N, Mohr J, Grosse C, Herzberg M, Hause G, Reith F, Nies DH (2013) Influence of copper resistance determinants on gold transformation by Cupriavidus metallidurans Strain CH34. J Bacteriol 195(10):2298–2308

    CAS  Google Scholar 

  • Wilson JR, Leang C, Morby AP, Hobman JL, Brown NL (2000) MerF is a mercury transport protein: different structures but a common mechanism for mercuric ion transporters? FEBS Lett 472(1):78–82

    CAS  Google Scholar 

  • Yuan C, Lu X, Qin J, Rosen BP, Le XC (2008) Volatile arsenic species released from Escherichia coli expressing the As(III) S-adenosylmethionine methyltransferase gene. Environ Sci Technol 42(9):3201–3206

    CAS  Google Scholar 

  • Zhang YB, Monchy S, Greenberg B, Mergeay M, Gang O, Taghavi S, van der Lelie D (2009) ArsR arsenic-resistance regulatory protein from Cupriavidus metallidurans CH34. Anton Leeuw Int J G 96(2):161–170

    CAS  Google Scholar 

  • Zimmermann M, Udagedara SR, Sze CM, Ryan TM, Howlett GJ, Xiao Z, Wedd AG (2012) PcoE–a metal sponge expressed to the periplasm of copper resistance Escherichia coli. Implication of its function role in copper resistance. J Inorg Biochem 115:186–197

    CAS  Google Scholar 

  • Zoropogui A, Gambarelli S, Covès J (2008) CzcE from Cupriavidus metallidurans CH34 is a copper-binding protein. Biochem Biophys Res Commun 365(4):735–739

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pieter Monsieurs .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 The Author(s)

About this chapter

Cite this chapter

Monsieurs, P., Hobman, J., Vandenbussche, G., Mergeay, M., Van Houdt, R. (2015). Response of Cupriavidus metallidurans CH34 to Metals. In: Mergeay, M., Van Houdt, R. (eds) Metal Response in Cupriavidus metallidurans. SpringerBriefs in Molecular Science(). Springer, Cham. https://doi.org/10.1007/978-3-319-20594-6_3

Download citation

Publish with us

Policies and ethics