Skip to main content

Advertisement

Log in

Cadmium and transport of ions and substances across cell membranes and epithelia

  • Published:
BioMetals Aims and scope Submit manuscript

Abstract

Toxic metals such as cadmium (Cd2+) pose serious risks to human health. However, even though the importance of Cd2+ as environmental health hazards is now widely appreciated, the specific mechanisms by which it produces its adverse effects have yet to be fully elucidated. Cd2+ is known to enter cells, it binds and interacts with a multitude of molecules, it may indirectly induce oxidative stress and interfere with gene expression and repair of DNA. It also interacts with transport across cell membranes and epithelia and may therefore disturb the cell’s homeostasis and function. Interaction with epithelial transport, especially in the kidney and the liver, may have serious consequences in general health. A lot of research still needs to be done to understand the exact way in which Cd2+ interferes with these transport phenomena. It is not always clear whether Cd2+ has primary or secondary effects on cell membrane transport. In the present review we try to summarize the work that has been done up to now and to critically discuss the relevance of the experimental work in vitro with respect to the in vivo situation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

BLMV:

Basolateral membrane vesicles

BBMV:

Brushborder membrane vesicles

sc:

Subcutaneous

iv:

Intravenous

ip:

Intra-peritoneal

TEA:

Tetraethylammonium

PAH:

p-aminohippurate

FL-MTX:

Fluorescein, methotrexate, fluorescent model substrate for Mrp2

i/o:

Inside/out

CdAc2:

Cadmium acetate

ECaC:

Epithelial Ca2+channel

NCX:

Na+/Ca2+ exchanger

Pi:

Inorganic phosphate

References

  • Ahn DW, Park YS (1995) Transport of inorganic phosphate in renal cortical brush-border membrane vesicles of cadmium-intoxicated rats. Toxicol Appl Pharmacol 133:239–243

    Article  PubMed  CAS  Google Scholar 

  • Ahn DW, Kim YM, Kim KR et al (1999) Cadmium binding and sodium-dependent solute transport in renal brush-border membrane vesicles. Toxicol Appl Pharmacol 154:212–218

    Article  PubMed  CAS  Google Scholar 

  • Ahn DW, Chung JM, Kim JY et al (2005) Inhibition of renal Na +/H + exchange in cadmium-intoxicated rats. Toxicol Appl Pharmacol 204:91–98

    Article  PubMed  CAS  Google Scholar 

  • Alberts B, Johnson A, Lewis J et al (eds) (2009) Molecular biology of the cell, 5th edn. Garland, New York

  • Barbier O, Jacquillet G, Tauc M et al (2004) Acute study of interaction among cadmium, calcium, and zinc transport along the rat nephron in vivo. Am J Physiol Renal Physiol 287:F1067–F1075

    Article  PubMed  CAS  Google Scholar 

  • Barriere H, Belfodil R, Rubera I et al (2003) Role of TASK2 potassium channels regarding volume regulation in primary cultures of mouse proximal tubules. J Gen Physiol 122:177–190

    Article  PubMed  CAS  Google Scholar 

  • Bathula CS, Garrett SH, Zhou XD et al (2008) Cadmium, vectorial active transport, and Mt-3-dependent regulation of cadherin expression in human proximal tubular cells. Toxicol Sci 102:310–318

    Article  PubMed  CAS  Google Scholar 

  • Bergeron M, Dubord L, Hausser C et al (1976) Membrane permeability as a cause of transport defects in experimental Fanconi syndrome. A new hypothesis. J Clin Invest 57:1181–1189

    CAS  Google Scholar 

  • Bernier J, Brousseau P, Krzystyniak K et al (1995) Immunotoxicity of heavy metals in relation to Great Lakes. Environ Health Perspect 103(Suppl 9):23–34

    Article  PubMed  CAS  Google Scholar 

  • Bhattacharyya MH (2009) Cadmium osteotoxicity in experimental animals: mechanisms and relationship to human exposures. Toxicol Appl Pharmacol 238:258–265

    Article  PubMed  CAS  Google Scholar 

  • Bhattacharyya MH, Whelton BD, Peterson DP et al (1988) Kidney changes in multiparous mice fed a nutrient-sufficient diet containing cadmium. Toxicology 50:205–215

    Article  PubMed  CAS  Google Scholar 

  • Blumenthal SS, Lewand DL, Buday MA et al (1990) Cadmium inhibits glucose uptake in primary cultures of mouse cortical tubule cells. Am J Physiol 258:F1625–F1633

    PubMed  CAS  Google Scholar 

  • Blumenthal SS, Ren L, Lewand DL et al (1998) Cadmium decreases SGLT1 messenger RNA in mouse kidney cells. Toxicol Appl Pharmacol 149:49–54

    Article  PubMed  CAS  Google Scholar 

  • Boron WF, Boulpaep EL (eds) (2009) Medical Physiology, 2nd edn. Saunders Elsevier, Philadelphia

    Google Scholar 

  • Brenner BM, Levine SA (eds) (2008) Brenner & Rector’s The Kidney, 8th edn. Saunders Elsevier, Philadelphia

    Google Scholar 

  • Brousseau P, Pellerin J, Morin Y et al (2000) Flow cytometry as a tool to monitor the disturbance of phagocytosis in the clam Mya arenaria hemocytes following in vitro exposure to heavy metals. Toxicology 142:145–156

    Article  PubMed  CAS  Google Scholar 

  • Bruscalupi G, Massimi M, Devirgiliis LC et al (2009) Multiple parameters are involved in the effects of cadmium on prenatal hepatocytes. Toxicol In Vitro 23:1311–1318

    Article  PubMed  CAS  Google Scholar 

  • Brzoska MM, Rogalska J, Galazyn-Sidorczuk M et al (2007) Effect of zinc supplementation on bone metabolism in male rats chronically exposed to cadmium. Toxicology 237:89–103

    Article  PubMed  CAS  Google Scholar 

  • Chen L, Jin T, Huang B et al (2006a) Critical exposure level of cadmium for elevated urinary metallothionein–an occupational population study in China. Toxicol Appl Pharmacol 215:93–99

    Article  PubMed  CAS  Google Scholar 

  • Chen L, Lei L, Jin T et al (2006b) Plasma metallothionein antibody, urinary cadmium, and renal dysfunction in a Chinese type 2 diabetic population. Diabetes Care 29:2682–2687

    Article  PubMed  CAS  Google Scholar 

  • Cheng TC, Sullivan JT (1984) Effects of heavy-metals on phagocytosis by molluscan hemocytes. Mar Environ Res 14:305–315

    Article  CAS  Google Scholar 

  • Chetty CS, Cooper A, Mcneil C et al (1992) The effects of cadmium invitro on adenosine-triphosphatase system and protection by thiol reagents in rat-brain microsomes. Arch Environ Contam Toxicol 22:456–458

    Article  PubMed  CAS  Google Scholar 

  • Chin TA, Templeton DM (1992) Effects of CdCl2 and Cd-metallothionein on cultured mesangial cells. Toxicol Appl Pharmacol 116:133–141

    Article  PubMed  CAS  Google Scholar 

  • Choi JS, Kim KR, Ahn DW et al (1999) Cadmium inhibits albumin endocytosis in opossum kidney epithelial cells. Toxicol Appl Pharmacol 161:146–152

    Article  PubMed  CAS  Google Scholar 

  • Chung NP, Cheng CY (2001) Is cadmium chloride-induced inter-sertoli tight junction permeability barrier disruption a suitable in vitro model to study the events of junction disassembly during spermatogenesis in the rat testis? Endocrinology 142:1878–1888

    Article  PubMed  CAS  Google Scholar 

  • Clarkson TW, Kench JE (1956) Urinary excretion of amino acids by men absorbing heavy metals. Biochem J 62:361–372

    PubMed  CAS  Google Scholar 

  • DeCoursey TE, Cherny VV (2007) Pharmacology of voltage-gated proton channels. Curr Pharm Des 13:2400–2420

    PubMed  Google Scholar 

  • Diaz GJ (2000) Basolateral and canalicular transport of xenobiotics in the hepatocyte: a review. Cytotechnology 34:225–235

    Article  PubMed  CAS  Google Scholar 

  • Duizer E, Gilde AJ, Versantvoort CH et al (1999) Effects of cadmium chloride on the paracellular barrier function of intestinal epithelial cell lines. Toxicol Appl Pharmacol 155:117–126

    Article  PubMed  CAS  Google Scholar 

  • Edwards JR, Prozialeck WC (2009) Cadmium, diabetes and chronic kidney disease. Toxicol Appl Pharmacol 238:289–293

    Article  PubMed  CAS  Google Scholar 

  • Elinder CG, Friberg L, Lind B et al (1983) Lead and cadmium levels in blood samples from the general population of Sweden. Environ Res 30:233–253

    Article  PubMed  CAS  Google Scholar 

  • Fanconi G (1936) Der fruhenfantile nephrotisch-glykosurische Zwergwuchs mit hypophostimischer Rachitis. Jahrb Kinderheilkd 147:229–338

    Google Scholar 

  • Faurskov B, Bjerregaard HF (1997) Effect of cadmium on active ion transport and cytotoxicity in cultured renal epithelial cells (A6). Toxicol In Vitro 11:717–722

    Article  PubMed  CAS  Google Scholar 

  • Faurskov B, Bjerregaard HF (2000) Chloride secretion in kidney distal epithelial cells (A6) evoked by cadmium. Toxicol Appl Pharmacol 163:267–278

    Article  PubMed  CAS  Google Scholar 

  • Faurskov B, Bjerregaard HF (2002) Evidence for cadmium mobilization of intracellular calcium through a divalent cation receptor in renal distal epithelial A6 cells. Pflugers Arch 445:40–50

    Article  PubMed  CAS  Google Scholar 

  • Forster IC, Hernando N, Biber J et al (2006) Proximal tubular handling of phosphate: a molecular perspective. Kidney Int 70:1548–1559

    Article  PubMed  CAS  Google Scholar 

  • Friberg L (1948) Proteinuria and kidney injury among workmen exposed to cadmium and nickel dust; preliminary report. J Ind Hyg Toxicol 30:32–36

    PubMed  CAS  Google Scholar 

  • Friberg L (1950) Injuries following continued administration of cadmium; preliminary report of a clinical and experimental study. Arch Ind Hyg Occup Med 1:458–466

    PubMed  CAS  Google Scholar 

  • Gachot B, Poujeol P (1992) Effects of cadmium and copper on zinc transport kinetics by isolated renal proximal cells. Biol Trace Elem Res 35:93–103

    Article  PubMed  CAS  Google Scholar 

  • Gagnon E, Hontela A, Jumarie C (2007) Reciprocal inhibition of Cd and Ca uptake in isolated head kidney cells of rainbow trout (Oncorhynchus mykiss). Toxicol In Vitro 21:1077–1086

    Article  PubMed  CAS  Google Scholar 

  • Galvez F, Franklin NM, Tuttle RB et al (2007) Interactions of waterborne and dietary cadmium on the expression of calcium transporters in the gills of rainbow trout: influence of dietary calcium supplementation. Aquat Toxicol 84:208–214

    Article  PubMed  CAS  Google Scholar 

  • Gonick HC (2008) Nephrotoxicity of cadmium & lead. Indian J Med Res 128:335–352

    PubMed  CAS  Google Scholar 

  • Hagos Y, Steffgen J, Rizwan AN et al (2006) Functional role of cationic amino acid residues in the sodium-dicarboxylate cotransporter 3 (NaDC-3) from winter flounder. Am J Physiol Renal Physiol 291:F1224–F1231

    Article  PubMed  CAS  Google Scholar 

  • Han JC, Park SY, Hah BG et al (2003) Cadmium induces impaired glucose tolerance in rat by down-regulating GLUT4 expression in adipocytes. Arch Biochem Biophys 413:213–220

    Article  PubMed  CAS  Google Scholar 

  • Hao C, Hao W, Wei X et al (2009) The role of MAPK in the biphasic dose-response phenomenon induced by cadmium and mercury in HEK293 cells. Toxicol In Vitro 23:660–666

    Article  PubMed  CAS  Google Scholar 

  • Harrison SA, Buxton JM, Clancy BM et al (1991) Evidence that erythroid-type glucose transporter intrinsic activity is modulated by cadmium treatment of mouse 3T3–L1 cells. J Biol Chem 266:19438–19449

    PubMed  CAS  Google Scholar 

  • Harvey B, Lacoste I, Ehrenfeld J (1991) Common channels for water and protons at apical and basolateral cell membranes of frog skin and urinary bladder epithelia. Effects of oxytocin, heavy metals, and inhibitors of H(+)-adenosine triphosphatase. J Gen Physiol 97:749–776

    Article  PubMed  CAS  Google Scholar 

  • Hassler E, Lind B, Piscator M (1983) Cadmium in blood and urine related to present and past exposure. A study of workers in an alkaline battery factory. Br J Ind Med 40:420–425

    PubMed  CAS  Google Scholar 

  • Hayashi Y, Kobayashi E, Okubo Y et al (2003) Excretion levels of urinary calcium and phosphorus among the inhabitants of Cd-polluted Kakehashi River basin of Japan. Biol Trace Elem Res 91:45–55

    Article  PubMed  CAS  Google Scholar 

  • Hazen-Martin DJ, Sens DA, Blackburn JG et al (1989a) An electrophysiological freeze fracture assessment of cadmium nephrotoxicity in vitro. In Vitro Cell Dev Biol 25:791–799

    Article  PubMed  CAS  Google Scholar 

  • Hazen-Martin DJ, Sens DA, Blackburn JG et al (1989b) Cadmium nephrotoxicity in human proximal tubule cell cultures. In Vitro Cell Dev Biol 25:784–790

    Article  PubMed  CAS  Google Scholar 

  • Hazen-Martin DJ, Todd JH, Sens MA et al (1993) Electrical and freeze-fracture analysis of the effects of ionic cadmium on cell membranes of human proximal tubule cells. Environ Health Perspect 101:510–516

    Article  PubMed  CAS  Google Scholar 

  • Herak-Kramberger CM, Spindler B, Biber J et al (1996) Renal type II Na/Pi-cotransporter is strongly impaired whereas the Na/sulphate-cotransporter and aquaporin 1 are unchanged in cadmium-treated rats. Pflugers Arch 432:336–344

    Article  PubMed  CAS  Google Scholar 

  • Herak-Kramberger CM, Brown D, Sabolic I (1998) Cadmium inhibits vacuolar H+-ATPase and endocytosis in rat kidney cortex. Kidney Int 53:1713–1726

    Article  PubMed  CAS  Google Scholar 

  • Hille B (ed) (2001) Ion channels of excitable membranes, 3rd edn. Sinauer Associates, Inc., Sunderland

    Google Scholar 

  • Himeno S, Yanagiya T, Fujishiro H (2009) The role of zinc transporters in cadmium and manganese transport in mammalian cells. Biochimie 91:1218–1222

    Article  PubMed  CAS  Google Scholar 

  • Hohage H, Mehrens T, Mergelsberg U et al (1998) Effects of extracellular cadmium on renal basolateral organic anion transport. Toxicol Lett 98:189–194

    Article  PubMed  CAS  Google Scholar 

  • Honda R, Tsuritani I, Noborisaka Y et al (2003) Urinary cadmium excretion is correlated with calcaneal bone mass in Japanese women living in an urban area. Environ Res 91:63–70

    Article  PubMed  CAS  Google Scholar 

  • Horiguchi H, Oguma E, Sasaki S et al (2005) Environmental exposure to cadmium at a level insufficient to induce renal tubular dysfunction does not affect bone density among female Japanese farmers. Environ Res 97:83–92

    Article  PubMed  CAS  Google Scholar 

  • Hung YM, Chung HM (2004) Acute self-poisoning by ingestion of cadmium and barium. Nephrol Dial Transplant 19:1308–1309

    Article  PubMed  Google Scholar 

  • Jacquillet G, Barbier O, Cougnon M et al (2006) Zinc protects renal function during cadmium intoxication in the rat. Am J Physiol Renal Physiol 290:F127–F137

    Article  PubMed  CAS  Google Scholar 

  • Janecki A, Jakubowiak A, Steinberger A (1992) Effect of cadmium chloride on transepithelial electrical resistance of Sertoli cell monolayers in two-compartment cultures–a new model for toxicological investigations of the “blood-testis” barrier in vitro. Toxicol Appl Pharmacol 112:51–57

    Article  PubMed  CAS  Google Scholar 

  • Jeon SH, Cho MH, Cho JH (2001) Effects of cadmium on gap junctional intercellular communication in WB-F344 rat liver epithelial cells. Hum Exp Toxicol 20:577–583

    Article  PubMed  CAS  Google Scholar 

  • Jolling K (2008) Chronic exposure of mice to cadmium: toxic effects on the renal proximal tubule. Biomedical Sciences, Universiteit Hasselt, Hasselt

    Google Scholar 

  • Jungwirth A, Paulmichl M, Lang F (1990) Cadmium enhances potassium conductance in cultured renal epitheloid (MDCK) cells. Kidney Int 37:1477–1486

    Article  PubMed  CAS  Google Scholar 

  • Kaur J, Sharma N, Attri S et al (2006) Kinetic characterization of Zinc transport process and its inhibition by Cadmium in isolated rat renal basolateral membrane vesicles: in vitro and in vivo studies. Mol Cell Biochem 283:169–179

    Article  PubMed  CAS  Google Scholar 

  • Kim KR, Park YS (1995) Phlorhizin binding to renal outer cortical brush-border membranes of cadmium-injected rabbits. Toxicol Appl Pharmacol 133:244–248

    Article  PubMed  CAS  Google Scholar 

  • Kim YK, Choi JK, Kim JS et al (1988) Changes in renal function in cadmium-intoxicated rats. Pharmacol Toxicol 63:342–350

    Article  PubMed  CAS  Google Scholar 

  • Kim KR, Lee HY, Kim CK et al (1990) Alteration of renal amino-acid-transport system in cadmium-intoxicated rats. Toxicol Appl Pharmacol 106:102–111

    Article  PubMed  CAS  Google Scholar 

  • Kim KR, Kim GC, Choi JS et al (1998) Renal transport systems for organic anions and cations in cadmium-exposed rats. Toxicol Appl Pharmacol 149:144–149

    Article  PubMed  CAS  Google Scholar 

  • Kim KR, Ahn DW, Choi JS et al (1999) Effect of cadmium on protein endocytosis in renal epithelial cells. Kidney Int 55:1597

    Article  Google Scholar 

  • Kim D, Garrett SH, Sens MA et al (2002) Metallothionein isoform 3 and proximal tubule vectorial active transport. Kidney Int 61:464–472

    Article  PubMed  CAS  Google Scholar 

  • Kinne RK, Schutz H, Kinne-Saffran E (1995) The effect of cadmium chloride in vitro on sodium-glutamate cotransport in brush border membrane vesicles isolated from rabbit kidney. Toxicol Appl Pharmacol 135:216–221

    Article  PubMed  CAS  Google Scholar 

  • Kinne-Saffran E, Hulseweh M, Pfaff C et al (1993) Inhibition of Na, K-ATPase by cadmium: different mechanisms in different species. Toxicol Appl Pharmacol 121:22–29

    Article  PubMed  CAS  Google Scholar 

  • Kiss T, Osipenko ON (1994) Toxic effects of heavy metals on ionic channels. Pharmacol Rev 46:245–267

    PubMed  CAS  Google Scholar 

  • L’Hoste S, Chargui A, Belfodil R et al (2009) CFTR mediates cadmium-induced apoptosis through modulation of ROS level in mouse proximal tubule cells. Free Radic Biol Med 46:1017–1031

    Article  PubMed  CAS  Google Scholar 

  • Lacroix A, Hontela A (2004) A comparative assessment of the adrenotoxic effects of cadmium in two teleost species, rainbow trout, Oncorhynchus mykiss, and yellow perch, Perca flavescens. Aquat Toxicol 67:13–21

    Article  PubMed  CAS  Google Scholar 

  • Lee HY, Kim KR, Woo JS et al (1990) Transport of organic compounds in renal plasma membrane vesicles of cadmium intoxicated rats. Kidney Int 37:727–735

    Article  PubMed  CAS  Google Scholar 

  • Lee HY, Kim KR, Park YS (1991) Transport kinetics of glucose and alanine in renal brush-border membrane vesicles of cadmium-intoxicated rabbits. Pharmacol Toxicol 69:390–395

    Article  PubMed  CAS  Google Scholar 

  • Leffler PE, Jin T, Nordberg GF (2000) Differential calcium transport disturbances in renal membrane vesicles after cadmium-metallothionein injection in rats. Toxicology 143:227–234

    Article  PubMed  CAS  Google Scholar 

  • Lin FJ, Fitzpatrick JW, Iannotti CA et al (1997) Effects of cadmium on trophoblast calcium transport. Placenta 18:341–356

    Article  PubMed  CAS  Google Scholar 

  • Lionetto MG, Maffia M, Cappello MS et al (1998) Effect of cadmium on carbonic anhydrase and Na+-K+-ATPase in eel, Anguilla anguilla, intestine and gills. Comp Biochem Physiol A Mol Integr Physiol 120:89–91

    Article  Google Scholar 

  • Markovich D, James KM (1999) Heavy metals mercury, cadmium, and chromium inhibit the activity of the mammalian liver and kidney sulfate transporter sat-1. Toxicol Appl Pharmacol 154:181–187

    Article  PubMed  CAS  Google Scholar 

  • Markovich D, Knight D (1998) Renal Na–Si cotransporter NaSi-1 is inhibited by heavy metals. Am J Physiol 274:F283–F289

    PubMed  CAS  Google Scholar 

  • Min KS, Ohyanagi N, Ohta M et al (1995) Effect of erythropoiesis on splenic cadmium-metallothionein level following an injection of CdCl2 in mice. Toxicol Appl Pharmacol 134:235–240

    Article  PubMed  CAS  Google Scholar 

  • Modi HR, Patil N, Katyare SS (2008) Effect of treatment with cadmium on kinetic properties of Na(+), K(+)-ATPase and glucose-6-phosphatase activity in rat liver microsomes a correlative study on influence of lipid/phospholipid make-up. Toxicology 254:29–41

    Article  PubMed  CAS  Google Scholar 

  • Moulis J (2010) Mechanisms of cadmium toxicity in connection with the homeostasis of zinc and other metals. Biometals Special Issue on Cadmium

  • Murer H, Hernando N, Forster I et al (2000) Proximal tubular phosphate reabsorption: molecular mechanisms. Physiol Rev 80:1373–1409

    PubMed  CAS  Google Scholar 

  • Nawrot TS, Van Hecke E, Thijs L et al (2008) Cadmium-related mortality and long-term secular trends in the cadmium body burden of an environmentally exposed population. Environ Health Perspect 116:1620–1628

    Article  PubMed  CAS  Google Scholar 

  • Nechay BR, Saunders JP (1977) Inhibition of Renal Adenosine-Triphosphatase by Cadmium. J Pharmacol Exp Ther 200:623–629

    PubMed  CAS  Google Scholar 

  • Nelson WJ, Shore EM, Wang AZ et al (1990) Identification of a membrane-cytoskeletal complex containing the cell adhesion molecule uvomorulin (E-cadherin), ankyrin, and fodrin in Madin-Darby canine kidney epithelial cells. J Cell Biol 110:349–357

    Article  PubMed  CAS  Google Scholar 

  • Nesovic-Ostojic J, Cemerikic D, Dragovic S et al (2008) Low micromolar concentrations of cadmium and mercury ions activate peritubular membrane K + conductance in proximal tubular cells of frog kidney. Comp Biochem Physiol A Mol Integr Physiol 149:267–274

    Article  PubMed  CAS  Google Scholar 

  • Niewenhuis RJ, Dimitriu C, Prozialeck WC (1997) Ultrastructural characterization of the early changes in intercellular junctions in response to cadmium (Cd2 +) exposure in LLC-PK1 cells. Toxicol Appl Pharmacol 142:1–12

    Article  PubMed  CAS  Google Scholar 

  • Nishijo M, Satarug S, Honda R et al (2004) The gender differences in health effects of environmental cadmium exposure and potential mechanisms. Mol Cell Biochem 255:87–92

    Article  PubMed  CAS  Google Scholar 

  • Nordberg GF (2009) Historical perspectives on cadmium toxicology. Toxicol Appl Pharmacol 238:192–200

    Article  PubMed  CAS  Google Scholar 

  • Nordberg GF, Piscator M, Nordberg M (1971) Distribution of Cadmium in blood. Acta Pharmacol Toxicol 30:289–295

    Google Scholar 

  • Olsson IM, Bensryd I, Lundh T et al (2002) Cadmium in blood and urine—impact of sex, age, dietary intake, iron status, and former smoking—association of renal effects. Environ Health Perspect 110:1185–1190

    Article  PubMed  CAS  Google Scholar 

  • Park K, Kim KR, Kim JY et al (1997) Effect of cadmium on Na–Pi cotransport kinetics in rabbit renal brush-border membrane vesicles. Toxicol Appl Pharmacol 145:255–259

    Article  PubMed  CAS  Google Scholar 

  • Park CS, Kim OS, Yun SM et al (2008) Presenilin 1/gamma-secretase is associated with cadmium-induced E-cadherin cleavage and COX-2 gene expression in T47D breast cancer cells. Toxicol Sci 106:413–422

    Article  PubMed  CAS  Google Scholar 

  • Pearson CA, Lamar PC, Prozialeck WC (2003) Effects of cadmium on E-cadherin and VE-cadherin in mouse lung. Life Sci 72:1303–1320

    Article  PubMed  CAS  Google Scholar 

  • Petersson Grawe K, Oskarsson A (2000) Cadmium in milk and mammary gland in rats and mice. Arch Toxicol 73:519–527

    Article  PubMed  CAS  Google Scholar 

  • Plakidou-Dymock S, Tanner MJ, McGivan JD (1994) Regulation of System B0 amino-acid-transport activity in the renal epithelial cell line NBL-1 and concomitant changes in SAAT1 hybridizing transcripts. Biochem J 301(Pt 2):399–405

    PubMed  CAS  Google Scholar 

  • Prozialeck WC (2000) Evidence that E-cadherin may be a target for cadmium toxicity in epithelial cells. Toxicol Appl Pharmacol 164:231–249

    Article  PubMed  CAS  Google Scholar 

  • Prozialeck WC, Lamar PC (1993) Surface binding and uptake of cadmium (Cd2+) by Llc-Pk1 cells on permeable membrane supports. Arch Toxicol 67:113–119

    Article  PubMed  CAS  Google Scholar 

  • Prozialeck WC, Lamar PC (1997) Cadmium (Cd2 +) disrupts E-cadherin-dependent cell–cell junctions in MDCK cells. In Vitro Cell Dev Biol Anim 33:516–526

    Article  PubMed  CAS  Google Scholar 

  • Prozialeck WC, Lamar PC (1999) Interaction of cadmium (Cd2 +) with a 13-residue polypeptide analog of a putative calcium-binding motif of E-cadherin. Biochim Biophys Acta-Mol Cell Res 1451:93–100

    Article  CAS  Google Scholar 

  • Prozialeck WC, Niewenhuis RJ (1991a) Cadmium (Cd2+) disrupts Ca(2+)-dependent cell–cell junctions and alters the pattern of E-cadherin immunofluorescence in LLC-PK1 cells. Biochem Biophys Res Commun 181:1118–1124

    Article  PubMed  CAS  Google Scholar 

  • Prozialeck WC, Niewenhuis RJ (1991b) Cadmium (Cd2+) disrupts intercellular junctions and actin filaments in LLC-PK1 cells. Toxicol Appl Pharmacol 107:81–97

    Article  PubMed  CAS  Google Scholar 

  • Prozialeck WC, Wellington DR, Lamar PC (1993) Comparison of the cytotoxic effects of cadmium chloride and cadmium-metallothionein in Llc-Pk1 cells. Life Sci 53:Pl337–Pl342

    Article  PubMed  CAS  Google Scholar 

  • Prozialeck WC, Wellington DR, Mosher TL et al (1995) The cadmium-induced disruption of tight junctions in LLC-PK1 cells does not result from apoptosis. Life Sci 57:PL199–PL204

    Article  PubMed  CAS  Google Scholar 

  • Prozialeck WC, Lamar PC, Ikura M (1996) Binding of cadmium (Cd2+) to E-CAD1, a calcium-binding polypeptide analog of E-cadherin. Life Sci 58:PL325–PL330

    Google Scholar 

  • Prozialeck WC, Lamar PC, Lynch SM (2003) Cadmium alters the localization of N-cadherin, E-cadherin, and beta-catenin in the proximal tubule epithelium. Toxicol Appl Pharmacol 189:180–195

    Article  PubMed  CAS  Google Scholar 

  • Reuss L, Wills NK, Lewis SA (1996) Epithelial transport proteins. In: Wills SA, Reuss L, Lewis SA (eds) Epithelial transport: a guide to methods and experimental analysis. Chapman & Hall, London

    Google Scholar 

  • Sabolic I, Brown D, Verbavatz JM et al (1994) H + -Atpases of Renal Cortical and Medullary Endosomes Are Differentially Sensitive to Sch-28080 and Omeprazole. Am J Physiol 266:F868–F877

    PubMed  CAS  Google Scholar 

  • Sabolic I, Ljubojevic M, Herak-Kramberger CM et al (2002) Cd-Mt causes endocytosis of brush-border transporters in rat renal proximal tubules. Am J Physiol Renal Physiol 283:F1389–F1402

    PubMed  CAS  Google Scholar 

  • Sabolic I, Herak-Kramberger CM, Antolovic R et al (2006) Loss of basolateral invaginations, in proximal tubules of cadmium-intoxicated rats is independent of microtubules and clathrin. Toxicology 218:149–163

    Article  PubMed  CAS  Google Scholar 

  • Sauve S, Brousseau P, Pellerin J et al (2002a) Phagocytic activity of marine and freshwater bivalves: in vitro exposure of hemocytes to metals (Ag, Cd, Hg and Zn). Aquat Toxicol 58:189–200

    Article  PubMed  CAS  Google Scholar 

  • Sauve S, Hendawi M, Brousseau P et al (2002b) Phagocytic response of terrestrial and aquatic invertebrates following in vitro exposure to trace elements. Ecotoxicol Environ Saf 52:21–29

    Article  PubMed  CAS  Google Scholar 

  • Schoenmakers TJ, Klaren PH, Flik G et al (1992) Actions of cadmium on basolateral plasma membrane proteins involved in calcium uptake by fish intestine. J Membr Biol 127:161–172

    PubMed  CAS  Google Scholar 

  • Schutte R, Nawrot TS, Richart T et al (2008) Bone resorption and environmental exposure to cadmium in women: a population study. Environ Health Perspect 116:777–783

    Article  PubMed  CAS  Google Scholar 

  • Seiffert (1897) Diseases in zinc smelter workers and hygienic precautions taken. Dtsch Vierteljahrschr Offentl Gesundh pfl. 29, 419 (In German)

  • Shemarova IV, Maizel’ EB, Khovanskikh AE (2000) Comparative study of effects of cadmium cations in free and chelated forms on activity of glutathione S-transferase, growth, and endocytosis in culture of the infusorium Tetrahymena pyriformis. J Evol Biochem Physiol 36:111–117

    Article  CAS  Google Scholar 

  • Souza V, Bucio L, Jay D et al (1996) Effect of cadmium on calcium transport in a human fetal hepatic cell line (WRL-68 cells). Toxicology 112:97–104

    Article  PubMed  CAS  Google Scholar 

  • Staessen JA, Lauwerys RR, Ide G et al (1994) Renal function and historical environmental cadmium pollution from zinc smelters. Lancet 343:1523–1527

    Article  PubMed  CAS  Google Scholar 

  • Suzuki CA, Cherian MG (1988) Effects of cadmium-metallothionein on renal organic ion transport and lipid peroxidation in rats. J Biochem Toxicol 3:11–20

    Article  PubMed  CAS  Google Scholar 

  • Tabatabai NM, Blumenthal SS, Lewand DL et al (2001) Differential regulation of mouse kidney sodium-dependent transporters mRNA by cadmium. Toxicol Appl Pharmacol 177:163–173

    Article  PubMed  CAS  Google Scholar 

  • Tabatabai NM, Blumenthal SS, Lewand DL et al (2003) Mouse kidney expresses mRNA of four highly related sodium-glucose cotransporters: regulation by cadmium. Kidney Int 64:1320–1330

    Article  PubMed  CAS  Google Scholar 

  • Tabatabai NM, Blumenthal SS, Petering DH (2005) Adverse effect of cadmium on binding of transcription factor Sp1 to the GC-rich regions of the mouse sodium-glucose cotransporter 1, SGLT1, promoter. Toxicology 207:369–382

    Article  PubMed  CAS  Google Scholar 

  • Takeichi M (1990) Cadherins—a molecular family important in selective cell–cell adhesion. Annu Rev Biochem 59:237–252

    Article  PubMed  CAS  Google Scholar 

  • Templeton DM (1990) Cadmium uptake by cells of renal origin. J Biol Chem 265:21764–21770

    PubMed  CAS  Google Scholar 

  • Terlouw SA, Graeff C, Smeets PH et al (2002) Short- and long-term influences of heavy metals on anionic drug efflux from renal proximal tubule. J Pharmacol Exp Ther 301:578–585

    Article  PubMed  CAS  Google Scholar 

  • Thévenod F (2003) Nephrotoxicity and the proximal tubule. Insights from cadmium. Nephron Physiol 93:87–93

    Article  CAS  Google Scholar 

  • Thévenod F (2010) Novel aspects of cadmium transport in mammalian cells: catch me if you can! Biometals (Special Issue on Cadmium)

  • Thévenod F, Friedmann JM (1999) Cadmium-mediated oxidative stress in kidney proximal tubule cells induces degradation of Na+/K+-ATPase through proteasomal and endo-/lysosomal proteolytic pathways. Faseb J 13:1751–1761

    PubMed  Google Scholar 

  • Thévenod F, Jones SW (1992) Cadmium block of calcium current in frog sympathetic neurons. Biophys J 63:162–168

    Article  PubMed  Google Scholar 

  • Thévenod F, Friedmann JM, Katsen AD et al (2000) Up-regulation of multidrug resistance P-glycoprotein via nuclear factor-kappaB activation protects kidney proximal tubule cells from cadmium- and reactive oxygen species-induced apoptosis. J Biol Chem 275:1887–1896

    Article  PubMed  Google Scholar 

  • Thijssen S, Cuypers A, Maringwa J et al (2007a) Low cadmium exposure triggers a biphasic oxidative stress response in mice kidneys. Toxicology 236:29–41

    Article  PubMed  CAS  Google Scholar 

  • Thijssen S, Maringwa J, Faes C et al (2007b) Chronic exposure of mice to environmentally relevant, low doses of cadmium leads to early renal damage, not predicted by blood or urine cadmium levels. Toxicology 229:145–156

    Article  PubMed  CAS  Google Scholar 

  • Tsuruoka S, Sugimoto K, Muto S et al (2000) Acute effect of cadmium-metallothionein on glucose and amino acid transport across the apical membrane of the rabbit proximal tubule perfused in vitro. J Pharmacol Exp Ther 292:769–777

    PubMed  CAS  Google Scholar 

  • Tsuruoka S, Swenson ER, Fujimura A et al (2008) Mechanism of Cd-induced inhibition of Na-glucose cotransporter in rabbit proximal tubule cells: roles of luminal pH and membrane-bound carbonic anhydrase. Nephron Physiol 110:11–20

    Article  CAS  Google Scholar 

  • Vander AJ (1963) Effects of zinc, cadmium, and mercury on renal transport systems. Am J Physiol 204:781–784

    PubMed  CAS  Google Scholar 

  • Vennekens R, Prenen J, Hoenderop JG et al (2001) Pore properties and ionic block of the rabbit epithelial calcium channel expressed in HEK 293 cells. J Physiol 530:183–191

    Article  PubMed  CAS  Google Scholar 

  • Verbost PM, Flik G, Lock RAC et al (1987a) Cadmium inhibition of Ca-2+ uptake in rainbow-trout gills. Am J Physiol 253:R216–R221

    PubMed  CAS  Google Scholar 

  • Verbost PM, Senden MHMN, Vanos CH (1987b) Nanomolar concentrations of Cd-2+ inhibit Ca-2+ transport-systems in plasma-membranes and intracellular Ca-2+ stores in intestinal epithelium. Biochim Biophys Acta 902:247–252

    Article  PubMed  CAS  Google Scholar 

  • Verbost PM, Flik G, Lock RA et al (1988) Cadmium inhibits plasma membrane calcium transport. J Membr Biol 102:97–104

    Article  PubMed  CAS  Google Scholar 

  • Verbost PM, Flik G, Pang PK et al (1989) Cadmium inhibition of the erythrocyte Ca2+ pump. A molecular interpretation. J Biol Chem 264:5613–5615

    PubMed  Google Scholar 

  • von Zglinicki T, Edwall C, Ostlund E et al (1992) Very low cadmium concentrations stimulate DNA synthesis and cell growth. J Cell Sci 103(Pt 4):1073–1081

    PubMed  CAS  Google Scholar 

  • Wagner CA, Waldegger S, Osswald H et al (1996) Heavy metals inhibit P-i-induced currents through human brush-border NaPi-3 cotransporter in Xenopus oocytes. Am J Physiol Renal Physiol 40:F926–F930

    Google Scholar 

  • Wagner CA, Finberg KE, Breton S et al (2004) Renal vacuolar H + -ATPase. Physiol Rev 84:1263–1314

    Article  PubMed  CAS  Google Scholar 

  • Wang L, Cao J, Chen D et al (2009) Role of oxidative stress, apoptosis, and intracellular homeostasis in primary cultures of rat proximal tubular cells exposed to cadmium. Biol Trace Elem Res 127:53–68

    Article  PubMed  CAS  Google Scholar 

  • Weidner WJ, Waddell DS, Sillman AJ (2000) Low levels of cadmium chloride alter the immunoprecipitation of corneal cadherin-complex proteins. Arch Toxicol 74:578–581

    Article  PubMed  CAS  Google Scholar 

  • Zimmerhackl LB, Momm F, Wiegele G et al (1998) Cadmium is more toxic to LLC-PK1 cells than to MDCK cells acting on the cadherin–catenin complex. Am J Physiol 275:F143–F153

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emmy Van Kerkhove.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Van Kerkhove, E., Pennemans, V. & Swennen, Q. Cadmium and transport of ions and substances across cell membranes and epithelia. Biometals 23, 823–855 (2010). https://doi.org/10.1007/s10534-010-9357-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10534-010-9357-6

Keywords

Navigation