Skip to main content

Advertisement

Log in

Chemical and biological characterization of siderophore produced by the marine-derived Aureobasidium pullulans HN6.2 and its antibacterial activity

  • Published:
BioMetals Aims and scope Submit manuscript

Abstract

After analysis using HPLC and electronic ion spray mass spectroscopy, the purified siderophore produced by the marine-derived Aureobasidium pullulans HN6.2 was found to be fusigen. The purified desferric fusigen still had strong inhibition of growth of the pathogenic Vibrio anguillarum while the fusigen chelated by Fe3+ lost the ability to inhibit the growth of the pathogenic bacterium. The added iron in the medium repressed expression of the hydroxylase gene encoding ornithine N5-oxygenase that catalyzes the N5-hydroxylation of ornithine for the first step of siderophore biosynthesis in the yeast cells while expression of the hydroxylase gene in the yeast cells grown in the medium plus ornithine was enhanced.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Actis LA, Fish W, Crosa JH, Kellerman K, Ellenberger SR, Hauser FM, Sanders-Loehr J (1986) Characterization of anguibactin, a novel siderophore from Vibrio anguillarum 775 (pJM1). J Bacteriol 167:57–65

    CAS  PubMed  Google Scholar 

  • An Z, Mei B, Yuan WM, Leong SA (1997) The distal GATA sequences of the sid1 promoter of Ustilago maydis mediate iron repression of siderophore production and interact directly with Urbs1, a GATA family transcription factor. EMBO J 16:1742–1750. doi:10.1093/emboj/16.7.1742

    Article  CAS  PubMed  Google Scholar 

  • Atkin C, Neilands J, Phaff H (1970) Rhodotorulic acid from species of Leucosporidium, Rhodosporidium, Rhodotorula, Sporodiobolus, and Sporobolomyces and a new alanine-containing ferrichrome from Criptcoccus melibiosum. J Bacteriol 103:722–733

    CAS  PubMed  Google Scholar 

  • Baakza A, Vala AK, Dave BP, Dube HC (2004) A comparative study of siderophore production by fungi from marine and terrestrial habitats. J Exp Mar Biol Ecol 311:1–9. doi:10.1016/j.jembe.2003.12.028

    Article  CAS  Google Scholar 

  • Chi ZM, Wang F, Chi Z, Yue LX, Liu GL, Zhang T (2009) Bioproducts from Aureobasidium pullulans, a biotechnologically important yeast. Appl Microbiol Biotechnol 82:793–804. doi:10.1007/s00253-009-1882-2

    Article  CAS  PubMed  Google Scholar 

  • Diekmann H, Zahner H (1967) Konstitution yon Fusigen and dessen Abbau zu Δ-2-Anhydromevalonsaurelacton. Eur J Biochem 3:213–218. doi:10.1111/j.1432-1033.1967.tb19518.x

    Article  CAS  PubMed  Google Scholar 

  • Haas H (2003) Molecular genetics of fungal siderophore biosynthesis and uptake: the role of siderophores in iron uptake and storage. Appl Microbiol Biotechnol 62:316–330. doi:10.1007/s00253-003-1335-2

    Article  CAS  PubMed  Google Scholar 

  • Haas H, Zadra I, Stoeffler G, Angermayr K (1999) The Aspergillus nidulans GATA factor SREA is involved in regulation of siderophore biosynthesis and control of iron uptake. J Biol Chem 19:1999–2006

    Google Scholar 

  • Haselwandter K, Dobemigg B, Beck W, Jung G, Cansiert A, Winkelman G (1992) Isolation and identification of hydroxamate siderophores of ericoid mycorrhizal fungi. Biometals 5:51–56. doi:10.1007/BF01079698

    Article  CAS  Google Scholar 

  • Hossain MB, Jalal MAF, van der Helm D (1998) Gallium-complex of anguibactin, a siderophore from fish pathogen Vibrio anguillarum. J Chem Crystallogr 28:57–60. doi:10.1023/A:1021782703768

    Article  CAS  Google Scholar 

  • Jalal MAF, Hossain MB, van der Helm D, Sanders-Loehr J, Actis LA, Crosa JH (1989) Structure of anguibactin, a unique plasmid-related bacterial siderophore from the fish pathogen Vibrio anguillarum. J Am Chem Soc 111:292. doi:10.1021/ja00183a044

    Article  CAS  Google Scholar 

  • Johnson L (2008) Iron and siderophores in fungal–host interactions. Mycol Res 112:170–183. doi:10.1016/j.mycres.2007.11.012

    Article  CAS  PubMed  Google Scholar 

  • Li JF, Chi ZM (2004) Siderophores from marine microorganisms and their applications. J Ocean Univ China 3:40–47. doi:10.1007/s11802-004-0006-y

    Article  Google Scholar 

  • Li CH, Song LS, Zhao JM, Zhu L, Zou HB, Zhang H, Wang ZH, Cai ZH (2007) Preliminary study on a potential antibacterial peptide derived from histone H2A in hemocytes of scallop Chlamys farreri. Fish Shellfish Immunol 22:663–672. doi:10.1016/j.fsi.2006.08.013

    Article  PubMed  Google Scholar 

  • Li JF, Chi ZM, Li HF, Wang XH (2008) Characterization of a mutant of Alteromonas aurantia A18 and its application in mariculture. J Ocean Univ China 7:55–59. doi:10.1007/s11802-008-0055-8

    Article  CAS  Google Scholar 

  • Neilands JB (1984) Methodology of siderophores. Struct Bond (Berlin) 58:1–24

    Article  CAS  Google Scholar 

  • Renshaw JC, Robson GD, Trinci APJ, Wiebe MG, Livens FR, Colllison D, Taylor RJ (2002) Fungal siderophores: structures, functions and applications. Mycol Res 106:1123–1142. doi:10.1017/S0953756202006548

    Article  CAS  Google Scholar 

  • Riquelme M (1996) Fungal siderophores in plant–microbe interactions. Microbiol SEM 12:537–546

    CAS  Google Scholar 

  • Sayer JM, Emery TF (1968) Structures of the naturally occurring hydroxamic acids, fusarinines A and B. Biochemistry 7:184–190. doi:10.1021/bi00841a023

    Article  CAS  PubMed  Google Scholar 

  • Soengas RG, Anta C, Espada A, Paz V, Ares IR, Balado M, Rodriguez J, Lemosc ML, Jimenez C (2006) Structural characterization of vanchrobactin, a new catechol siderophore produced by the fish pathogen Vibrio anguillarum serotype O2. Tetrahedron Lett 47:7113–7116. doi:10.1016/j.tetlet.2006.07.104

    Article  CAS  Google Scholar 

  • Wang XH, Chi ZM, Li J (2007) Isolation and identification of a marine killer yeast strain YF07b and cloning of gene encoding the killer toxin from the yeast. Acta Oceanol Sin 26:101–109

    CAS  Google Scholar 

  • Wang W, Chi ZM, Chi Z, Li J, Wang XH (2009) Siderophore production by the marine-derived Aureobasidium pullulans and its antimicrobial activity. Bioresour Technol 100:2639–2641. doi:10.1016/j.biortech.2008.12.010

    Article  CAS  PubMed  Google Scholar 

  • Zhang FL, Chen JX, Chi ZM, Wu LF (2006) Expression and processing of Vibrio anguillarum zinc-metalloprotease in Escherichia coli. Arch Microbiol 186:11–20. doi:10.1007/s00203-006-0118-4

    Article  CAS  PubMed  Google Scholar 

  • Zhou LW, Haas H, Marzluf GA (1998) Isolation and characterization of a new gene, sre, which encodes a GATA type regulatory protein that controls iron transport in Neurospora crassa. Mol Gen Genet 259:532–540. doi:10.1007/s004380050845

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grant 30771645 from National Natural Science Foundation of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhenming Chi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, W., Chi, Z., Liu, G. et al. Chemical and biological characterization of siderophore produced by the marine-derived Aureobasidium pullulans HN6.2 and its antibacterial activity. Biometals 22, 965–972 (2009). https://doi.org/10.1007/s10534-009-9248-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10534-009-9248-x

Keywords

Navigation