Skip to main content
Log in

Siderophores from marine microorganisms and their applications

  • Review
  • Published:
Journal of Ocean University of China Aims and scope Submit manuscript

Abstract

In view of the fact that siderophores from microorganisms in different environments have received much attention in recent years because of their potential applications and diverse physiological functions, this review deals with siderophore-producing marine microorganisms and the detection, chemical structure and potential applications of siderophores.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Actis, L.A., W. Fish, J.H. Crosa, K. Kellerman, S. R. Ellenberger, et al., 1986. Characterization of anguibactin, a novel siderophore from Vibrio anguillarum 775 (pJMl). J. Bacteriol., 167(1): 57–65.

    Google Scholar 

  • Armsterong, J.E., and C. Van Baalen, 1979. Iron transport in microalgae: The isolation and biological activity of a hydroxamate siderophore from the blue-green alga Agmenellum quadruplicatum. J. Gen. Microbiol., 111: 253–262.

    Google Scholar 

  • Arnow, LE., 1937. Colorimetric determination of the components of 3,4-dihydroxyphenylalanine-tyrosine mixtures. J. Biol. Chem., 118: 531–537.

    Google Scholar 

  • Barbeau, K., G. P. Zhang, H. L. David, and A. Butler, 2002. Petrobactin, a Photoreactive siderophore produced by the oil-degrading marine bacterium Marinobacter hydrocarbonoclasticus. J. Am. Chem. Soc., 124(3): 378–379.

    Article  Google Scholar 

  • Barbeau, K., E. L. Rue, K. W. Bruland, and A. Butler, 2001. Photochemical cycling of iron in the surface oceanmediated by microbial iron (III)-binding ligands. Nature, 413(27): 409–413.

    Article  Google Scholar 

  • Barghouthi, S., R. Young, and M. O. J. Olson, 1989. Amonabactin, a novel tryptophan- or phenylalanine-containing phenolate siderophore in Aeromonas hydrophila. Journal of Bacteriology, 171(4): 1811–1816.

    Google Scholar 

  • Bernt, L.L., D.H. Pamela, W.T. Steven, W.W. Steven, G.T. Charles, et al., 1995. Voltammetric estimation of iron ( III ) thermodynamic stability constants for catecholate siderophores isolated from marine bacteria and cyanobacteria. Marine Chemistry, 50: 179–188.

    Article  Google Scholar 

  • Bickel, H., and G. E. Hall, 1960. Stoffwechselprodukte von actinomyceten. Uber die konstitution von ferrioxamine B. Helv. Chim. Acta., 43: 2129–2183.

    Article  Google Scholar 

  • Brown, CM., and C.G. Trick, 1992. Response of the cyanobacterium, Oscillatoria tenuis, to low iron environments: The effect on growth rate and evidence for siderophore production. Arch. Microbial., 157: 349–354.

    Article  Google Scholar 

  • Bruland, K.W., K.J. Orians, and J.P. Cowen, 1994. Reactive trace metals in the stratified central North Pacific. Geochim. Cosmochim. Ada., 58: 3178–3182.

    Google Scholar 

  • Butler, A., 1998. Acquisition and utilization of transition metal Ions by marine organisms. Science, 281(10): 207–209.

    Article  Google Scholar 

  • Capone, D.G., J.P. Zehr, H.W. Paerl, B. Bergman, and E.J. Carpenter, 1997. Trichodesmium, a globally significant marine cyanobacterium. Science, 276: 1221–1229.

    Article  Google Scholar 

  • Carpenter, E.J., and K. Romans, 1991. Major role of the cyanobacterium Trichodesmium in nutrient cycling in the North Atlantic Ocean. Science, 254: 1356–1358.

    Article  Google Scholar 

  • Chai, S., T. Welch, and J.H. Crosa, 1998. Characterization of the interaction between Fur and the iron transport promoter of the virulence plasmid in Vibrio anguillarum. Journal of Biological Chemistry, 273: 33841–33847.

    Article  Google Scholar 

  • Chen, Q., and J. H. Crosa, 1996. Antisense RNA, Fur, iron, and the regulation of iron transport genes in Vibrio anguillarum. J. Biol. Chem., 271: 1885–1891.

    Google Scholar 

  • Chen, Q., A.M. Wertheimer, M.E. Tolmasky, and J.H. Crosa, 1996. The angR protein and the siderophore anguibactin positively regulate the expression of iron-transport genes in Vibrio anguillarum. Mol. Microbiol., 22: 127–134.

    Article  Google Scholar 

  • Cosima, P., H. Michael, and H. Jürgen, 2002. Transfer of the core region genes of the Yersinia enterocolitica WAC serotype 0:8 High-Pathogenicity Island to Y. enterocolitica MRS40, a strain with low levels of pathogenicity, confers a Yersiniabactin biosynthesis phenotype and enhanced mouse virulence. Infect. Immun., 70(4): 1832–1841.

    Article  Google Scholar 

  • Crosa, J.H:, 1980. A plasmid associated with virulence in the marine fish pathogen Vibrio anguillarum species an iron-sequesteringsystem. Nature, 284(5756): 566–568.

    Article  Google Scholar 

  • Crosa, J.H., 1989. Genetics and molecular biology of siderophore mediated iron transport in bacteria. Microbiol. Rev., 53: 517–530.

    Google Scholar 

  • Crosa, J.H., 1997. Signal transduction and transcriptional and posttranscriptional control of iron-regulated genes in bacteria. Microbiol. Mol. Biol. Rev., 67: 319–336.

    Google Scholar 

  • Crosa, J. H., 1999. Molecular genetics of iron transport as a component of bacterial virulence. In: Iron and Infection. 2nd edition. J. J. Bullen, and E. Griffiths eds., John Wiley and Sons Ltd., New York, 255–288.

    Google Scholar 

  • Crosa, J. H., 1984. The relationship of plasmid-mediated iron transport and bacterial virulence. Annu. Rev. Microbiol., 38: 69–89.

    Article  Google Scholar 

  • Crosa, J. H., M. H. Schiewe, and S. Falkow, 1977. Evidence for plasmid contribution to the virulence of the fish pathogen Vibrio anguillarum. Infect. Immun., 27: 509–513.

    Google Scholar 

  • Crosa, J.H., L. Hodges, and M.H. Schiewe, 1980. Curing of a plasmid is correlated with an attenuation of virulence in the marine fish pathogen Vibrio anguillarum. Infect. Immun., 27: 897–902.

    Google Scholar 

  • Csáky, T.Z., 1948. On the estimation of bound hydroxylamine in biological materials. Acta. Chem. Scand., 2: 450–454.

    Article  Google Scholar 

  • Duran, N., and A. Machuca, 1995. Kraft pulp bleaching by an extracellular low molecular mass metabolite from the ascomycete Thermoascus aurantiacus. Holz ais Koh und Werkstott., 53: 346.

    Article  Google Scholar 

  • Ellis, A. E., 1999. Immunity to bacteria in fish. Fish & Shellfish Immunology, 9: 291–308.

    Article  Google Scholar 

  • Estep, M., J. E. Armstrong, and C. Van Baalen, 1975. Evidence for the occurrence of specific iron (III)-binding compounds in near-shore marine ecosystems. Appl. Microbial., 30: 186–188.

    Google Scholar 

  • Gilis, A., M. A. Khan, P. Cornelis, J. M. Meyer, M. Mergeay, et al., 1996. Siderophore-mediated iron uptake in Alcaligenes eutrophus CH34 and identification of aleB encoding the ferric iron-alcaligen E receptor. J. Bacteriol., 178: 5499–5507.

    Google Scholar 

  • Goodell, B., J. Jellison, J. Liu, G. Daniel, A. Paszczynski, et al., 1997. Low molecular weight chelators and phenolic compounds isolated from wood decay fungi and their role in the fungal biodegradation of wood. J. Biotechnol., 53: 133–62.

    Article  Google Scholar 

  • Gram, L., J. Melchiorsen, B. Spanggaard, I. Huber, and T.F. Nielsen, 1999. Inhibition of Vibrio anguillarum by Pseudomonas fluorescens AH2, a possible probiotic treatment of fish. Appl. Microbial. Biotechnol., 65(3): 969–973.

    Google Scholar 

  • Granger, J., and N. M. Price, 1999. The importance of siderophores in iron nutrition of heterotrophic marine bacteria. Limnol. Oceanogr., 44: 541–555.

    Article  Google Scholar 

  • Griffiths, E., 1987. The iron uptake systems of pathogenic bacteria. In: Iron and Infection. J. J. Bullen, and E. Griffiths, eds., John Wiley and Sons, Chichester, 69–137.

    Google Scholar 

  • Haygood, M.G., P. D. Holt, and A. Butler, 1993. Aerobactin production by a planktonic marine Vibrio sp. Limnol. Oceanogr., 38: 1091–1097.

    Article  Google Scholar 

  • Hider, R. C, 1984. Siderophore mediated absorption of iron. Struct. Bond. Berlin., 58: 26–87.

    Google Scholar 

  • Jalal, M.A. F., M. B. Hossain, van der D. Helm, L. J. Sanders, L. A. Actis, et al., 1989. Structure of Anguibactin, a unique plasmid-related bacterial siderophore from the fish pathogen Vibrio anguillarum. J. Am. Chem. Soc., 111: 292–296.

    Article  Google Scholar 

  • Jellison, J., V. Chandhoke, B. Goodell, and F. Fekete, 1991. The isolation and immunolocalization of iron-binding compounds produced by Gloeophyllum trabeum. Appl. Microbiol. Biotechnol., 35: 805–809.

    Article  Google Scholar 

  • Katoh, H., N. Hagino, A. R. Grossman, and T. Ogawa, 2001. Genes essential to iron transport in the cyanobacterium Synechocystis sp. Strain PCC 6803. J. Bacteriol., 183: 2779–2784.

    Article  Google Scholar 

  • Kerry, A., D.L. Laudenbach, and C.G. Trick, 1988. Influence of iron limitation and nitrogen source on growth and siderophore production by cyanobacteria. J. Phycol., 24: 566–571.

    Google Scholar 

  • Koster, W. L., L. A. Actis, L. S. Waldbeser, M.E. Tolmasky, and J. H. Crosa, 1991. Molecular characterization of the iron transport system mediated by the pJMl plasmid in Vibrio anguillarum 775. J. Biol. Chem., 266 (35): 23829–23833.

    Google Scholar 

  • Ledyard, K.M., and A. Butler, 1997. Structure of putrebactin, a new dihydroxamate siderophore produced by Shewanella putrefaciens. J. Biol. Inorg. Chem., 2: 93–97.

    Article  Google Scholar 

  • Lemos, M.L., P. Salinas, A.E. Toranzo, J.L. Barja, and J. H. Crosa, 1988. Chromosome-mediated iron-uptake system in pathogenic strains of Vibrio anguillarum. J. Bacteriol., 170: 1920–1925.

    Google Scholar 

  • Lewis, B.L., P. D. Holt, S. W. Taylor, S.W. Wilhelm, C.G. Trick, et al., 1995. Voltammetric estimation of iron (III) thermodynamic stability constants for catecholate siderophores isolated from marine bacteria and cyanobacteria. Marine Chemistry, 50: 179–188.

    Article  Google Scholar 

  • Li, H. R., Yi, Y., Li, Y., Chen, G., Ji, W. S., et al., 2001. Selection and identification of marine probiotics. High Technology Letters, 9: 18–22.

    Google Scholar 

  • Mackie, C, and T. H. Birkbeck, 1992. Siderophores produced by Vibrio anguillarum in vitro and in infected rainbow trout Oncorhynchus mykiss (Walbaoum). J. Fish. Dis., 15: 37–45.

    Article  Google Scholar 

  • Maldonado, M.T., and N.M. Price, 2000. Nitrate regulation of Fe reduction and transport in Fe-limited Thalassiosira oceanica. Limnol. Oceanogr., 45: 814–826.

    Article  Google Scholar 

  • Martin, J.H., and R.M. Gordon, 1988. Northeast Pacific iron distributions in relation to phytoplankton productivity. Deep-Sea Res., 35: 177–196.

    Article  Google Scholar 

  • Martinez, J.S., G.P. Zhang, P.D. Holt, H.T. Jung, C. J. Carrano, et al., 2000. Self-assembling amphiphilic siderophores from marine bacteria. Science, 287: 1245–1247.

    Article  Google Scholar 

  • Milagresa, A. M. F., V. Arantesa, C. L. Medeirosa, and A. Machucab, 2002. Production of metal chelating compounds by white and brown-rot fungi and their comparative abilities for pulp bleaching. Enzyme Microb. Technol., 30: 562–565.

    Article  Google Scholar 

  • Neilands, J. B., 1981. Microbial iron compounds. Annu. Rev. Biochem., 50: 715–731.

    Article  Google Scholar 

  • Neilands, J.B., 1984. Methodology of siderophores. Struct. Bond. Berlin., 58: 1–24.

    Google Scholar 

  • Neilands, J.B., 1995. Siderophores: structure and function of microbial iron transport compounds. J. Biol. Chem., 270(45): 26723–26726.

    Google Scholar 

  • O’Brien, I.G., and F. Gibson, 1970. The structure of enterochelin and related 2, 3-dihydroxy-N-benzoylserine conjugates from Escherichia coli. Biochim. Ada., 215: 393–402.

    Google Scholar 

  • Okujo, N., M. Saito, S. Yamamoto, T. Yoshida, S. Miyoshi, et al., 1994. Structure of vulnibactin, a new polyamine-containing siderophore from Vibrio vulnificus. Bio-Metals, 7: 109–116.

    Google Scholar 

  • Parra, C, R. Oses, J. Ruiz, I. Urtubia, J. Baeza, et al., 1998. Kraft pulp bleaching by dihydroxybenzenes and siderophores from white-rot fungi. Proceedings of the 7th International Conference on Biotechnology in the Pulp and Paper Industry, Vancouver, 161–164.

  • Paszczynski, A., R. Crawford, D. Funk, and B. Goodell, 1999. De novo synthesis of brown-rot 4, 5-dimethoxycatechol and 2, 5-dimethoxyhydroquinone by the fungus Gloeophyllum trabeum. Appl. Environ. Microbiol., 65: 674–679.

    Google Scholar 

  • Pollack, J.R., and J.B. Neilands, 1970. Enterobactin, an iron transport compound from Salmonella typhimurium. Biochem. Biophys. Res. Commun., 38: 989–992.

    Article  Google Scholar 

  • Reid, R. T., and A. Butler, 1991. Investigation of the mechanism of iron acquisition by the marine bacterium Alteromonas luteoviolaceus. characterization of siderophore production. Limnol. Oceanogr., 36: 1783–1792.

    Article  Google Scholar 

  • Reid, R.T., D.H. Live, D.J. Faulkner, and A. Butler, 1993. A siderophore from a marine bacterium with an exceptional ferric ion affinity constant. Nature, 366: 455–458.

    Article  Google Scholar 

  • Rueter, J.G., K. Ohki, and Y. Fujita, 1990. The effect of iron nutrition on photosynthesis and nitrogen fixation in cultures of Trichodesmium (Cyanophyceae). J. Phycol., 26: 30–35.

    Article  Google Scholar 

  • Rueter, J. G., D. A. Hutchins, R. W. Smith, and N. L. Unsworth, 1992. Iron nutrition of Trichodesmium. In: Marine Pelagic Cyanobacteria: Trichodesmium and Other Diazotrophs. E.J. Carpenter, D. G. Capone, and J. G. Rueter, eds., Kluwer Academic, Dordrecht, 289–306.

    Google Scholar 

  • Salinas, P., and J.H. Crosa, 1995. Regulation of angR, a gene with regulatory and biosynthetic functions in the pJM1 plasmid-mediated iron uptake system of Vibrio anguillarum. Gene, 160: 17–23.

    Article  Google Scholar 

  • Salinas, P. C, M. E. Tolmasky, and J. H. Crosa, 1989. Regulation of the iron uptake system in Vibrio anguillarum: evidence for a cooperative effect between two transcriptional activators. Proc. Natl. Acad. Sci., USA, 86: 3529–3533.

    Article  Google Scholar 

  • Schwyn, B., and H.B. Neilands, 1987. Universal chemical assay for the detection and determination of siderophores. Anal. Biochem., 160: 47–56.

    Article  Google Scholar 

  • Simpaom, F.B., and J.B. Neilands, 1976. Sidero- chromes in cyanophyceae: Isolation and characterization of schizokinen from Anabaena sp. J. Phycol., 12: 44–48.

    Article  Google Scholar 

  • Stork, M., M.D. Lorenzo, T.J. Welch, L.M. Crosa, and J.H. Crosa, 2002. Plasmid-mediated iron uptake and virulence in Vibrio anguillarum. Plasmid, 48: 222–228.

    Article  Google Scholar 

  • Sugita, H., Y. Hirose, N. Matsuo, and Y. Deguchi, 1998. Production of the antibacterial substance by Bacillus sp. strain NM 12, an intestinal bacterium of Japanese coastal fish. Aquaculture, 165: 269–280.

    Article  Google Scholar 

  • Suguira, Y., and K. Nomoto, 1984. Phytosiderophores: Structures and properties of mugineic acids and their metal complexes. Struct. Bond. Berlin., 58: 107–135.

    Google Scholar 

  • Takahashi, A., 1987. Biscaberin, a new siderophore, sensitizing tumor cells to macrophage-mediated cytolysis. J. Antibiot., 40: 1671–1676.

    Google Scholar 

  • Takahiro, Y., H. Ken-ichiro, and O. Hiroshi, 2002. Dissolution of iron hydroxides by marine bacterial siderophore. Chemical Geology, 184: 1–9.

    Article  Google Scholar 

  • Tolmasky, M.E., L.A. Actis, and J.H. Crosa, 1988. Genetic analysis of the iron uptake region of the Vibrio anguillarum plasmid pJMl: molecular cloning of genetic determinants encoding a novel trans activator of siderophore biosynthesis. J. Bacterial., 160: 860–866.

    Google Scholar 

  • Tolmasky, M. E., L.A. Actis, and J.H. Crosa, 1994. A histidine decarboxylase gene encoded by the Vibrio anguillarum plasmid pJMl: histamine is a precursor in the biosynthesis of anguibactin. Mol. Microbiol., 15: 87–95.

    Article  Google Scholar 

  • Tortell, P.D., M. T. Maldonado, and N. M. Price, 1996. The role of heterotrophic bacteria in iron-limited ocean ecosystems. Nature, 383: 330–332.

    Article  Google Scholar 

  • Trick, C. G., 1989. Hydroxamate-siderophore production and utilization by marine eubacteria. Curr. Microbiol., 18: 375–378.

    Article  Google Scholar 

  • Watanabe, N. A., T. Nagasu, K. Katsu, and K. Kiton, 1987. E-0702, a new cephalosporin, is incorporated into Escherichia coli cells via the tonB-dependent iron transport system. Antimicrob. Agents Chemother., 31: 497–504.

    Google Scholar 

  • Wertheimer, A.M., W. Verwej, Q. Chen, L.M. Crosa, M. Nagasawa, et al., 1999. Characterization of the angR gene of Vibrio anguillarum: essential role in virulence. Infect. Immun., 67: 6496–6509.

    Google Scholar 

  • Wilhelm, S. W., and C. G. Trick, 1994. Iron-limited growth of cyanobacteria: Multiple siderophore production is a common response. Limnol. Oceanogr., 39: 1979–1984.

    Article  Google Scholar 

  • Williams, P. H., and N. H. Carbonetti, 1986. Iron, siderophores, and the pursuit of virulence: independence of the aerobactin and enterobactin iron uptake systems in Escherichia coli. Infect. Immun., 51: 942–947.

    Google Scholar 

  • Winkelman, G., 1991. Handbook of Microbial Iron Chelates. CRC Press, Boca Raton.

    Google Scholar 

  • Wolf, M., and J.H. Crosa, 1986. Evidence for the role of a siderophore in promoting Vibrio anguillarum infections. J. Gen. Microbiol., 132: 2949–2952.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, J., Chi, Z. Siderophores from marine microorganisms and their applications. J Ocean Univ. China 3, 40–47 (2004). https://doi.org/10.1007/s11802-004-0006-y

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11802-004-0006-y

Key words

Navigation