Skip to main content

Advertisement

Log in

Nitrogen, organic carbon and sulphur cycling in terrestrial ecosystems: linking nitrogen saturation to carbon limitation of soil microbial processes

  • Synthesis and Emerging Ideas
  • Published:
Biogeochemistry Aims and scope Submit manuscript

Abstract

Elevated and chronic nitrogen (N) deposition to N-limited terrestrial ecosystems can lead to ‘N saturation’, with resultant ecosystem damage and leaching of nitrate (NO3 ) to surface waters. Present-day N deposition, however, is often a poor predictor of NO3 leaching, and the pathway of the ecosystem transition from N-limited to N-saturated remains incompletely understood. The dynamics of N cycling are intimately linked to the associated carbon (C) and sulphur (S) cycles. We hypothesize that N saturation is associated with shifts in the microbial community, manifest by a decrease in the fungi-to-bacteria ratio and a transition from N to C limitation. Three mechanisms could lead to lower amount of bioavailable dissolved organic C (DOC) for the microbial community and to C limitation of N-rich systems: (1) Increased abundance of N for plant uptake, causing lower C allocation to plant roots; (2) chemical suppression of DOC solubility by soil acidification; and (3) enhanced mineralisation of DOC due to increased abundance of electron acceptors in the form of \({{\text{SO}}_{ 4}}^{ 2-}\) and NO3 in anoxic soil micro-sites. Here we consider each of these mechanisms, the extent to which their hypothesised impacts are consistent with observations from intensively-monitored sites, and the potential to improve biogeochemical models by incorporating mechanistic links to the C and S cycles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aber JD, Nadelhoffer KJ, Steudler P, Melillo JM (1989) Nitrogen saturation in northern forest ecosystems. Bioscience 39:378–386

    Article  Google Scholar 

  • Aber JD, McDowell WH, Nadelhoffer KJ, Magill A, Berntson G, Kamakea M, McNulty SG, Currie W, Rustad L, Fernandez I (1998) Nitrogen saturation in temperate forest ecosystems: hypotheses revisited. Bioscience 48:921–934

    Article  Google Scholar 

  • Alewell C (2001) Predicting reversibility of acidification: the European sulfur story. Water Air Soil Pollut 130:1271–1276

    Article  Google Scholar 

  • Alewell C, Paul S, Lischeid G, Küsel K, Gehre M (2006) Characterizing the redox status in three different forested wetlands with geochemical data. Environ Sci Technol 40:7609–7615

    Article  Google Scholar 

  • Alewell C, Paul S, Lischeid G, Storck FR (2008) Co-regulation of redox processes in freshwater wetlands as a function of organic matter availability? Sci Total Environ 404:335–342

    Article  Google Scholar 

  • An S, Gardner WS (2002) Dissimilatory nitrate reduction to ammonium (DNRA) as a nitrogen link, versus denitrification as a sink in a shallow estuary (Laguna Madre/Baffin Bay, Texas). Mar Ecol Prog Ser 237:41–50

    Article  Google Scholar 

  • Azam F, Mahmood T, Malik KA (1988) Immobilization-remineralization of NO3–N and total N balance during decomposition of glucose, sucrose and cellulose in soil incubated at different moisture regimes. Plant Soil 107:159–163

    Article  Google Scholar 

  • Barton LL, Northup DE (2011) Microbial ecology. Wiley-Blackwell, Hoboken

    Book  Google Scholar 

  • Bartlett R, Bottrell SH, Coulson JP, Lee J, Forbes L (2009) 34S tracer study of pollutant sulfate behaviour in a lowland peatland. Biogeochemistry 95:261–275

  • Bernhardt ES, Likens GE (2002) DOC enrichment alters nitrogen dynamics in a forest stream. Ecology 83(6):1689–1700

    Article  Google Scholar 

  • Bobbink R, Hicks K, Galloway J, Spranger T, Alkemade R, Ashmore M, Bustamante M, Cinderby S, Davidson E, Dentener F, Emmett B, Erisman J-W, Fenn M, Gilliam F, Nordin A, Pardo L, De Vries W (2010) Global assessment of nitrogen deposition effects on terrestrial plant diversity: a synthesis. Ecol Appl 20(1):30–59

    Article  Google Scholar 

  • Boberg JB, Finlay RD, Stenlid J, Lindahl BD (2010) Fungal C translocation restricts N-mineralization in heterogeneous environments. Funct Ecol 24:454–459

    Article  Google Scholar 

  • Borken W, Xu Y-J, Brumme R, Lamersdorf N (1999) A climate change scenario for carbon dioxide and dissolved organic carbon fluxes from a temperate forest soil: drough and rewetting effects. Soil Sci Soc Am J 63:1848–1855

    Article  Google Scholar 

  • Boxman AW, van der Ven PJM, Roelofs JGM (1998) Ecosystem recovery after a decrease in nitrogen input to a Scots pine stand at Ysselsteyn, the Netherlands. For Ecol Manag 101(1–3):155–163

    Article  Google Scholar 

  • Boyle SA, Yarwood RR, Bottomley PJ, Myrold DD (2008) Bacterial and fungal contributions to soil nitrogen cycling under Douglas fir and red alder at two sites in Oregon. Soil Biol Biochem 40:443–451

    Article  Google Scholar 

  • Camarero L, Rogora M, Mosello R, Anderson NJ, Barbieri A, Botev I, Kernan M, Kopáček J, Korhola A, Lotter AF, Muri G, Postolache C, Stuchlík E, Thies H, Wright RF (2009) Regionalisation of chemical variability in European mountain lakes. Freshw Biol 54:2452–2469

    Article  Google Scholar 

  • Clark JM, Chapman PJ, Heathwaite AL, Adamson JK (2006) Suppression of dissolved organic carbon by sulphate induced acidification during simulated droughts. Environ Sci Technol 40:1776–1783

    Article  Google Scholar 

  • Clemensson-Lindell A, Persson H (1995) Fine-root vitality in a Norway spruce stand subjected to various nutrient supplies. Plant Soil 168–169:167–172

    Article  Google Scholar 

  • Curtis CJ, Evans CD, Goodale CL, Heaton THE (2011) What have stable isotope studies revealed about the nature and mechanisms of N saturation and nitrate leaching from semi-natural catchments? Ecosystems 14(6):1021–1037

    Article  Google Scholar 

  • Davidson EA, Richardson AD, Savage KE, Hollinger DY (2006) A distinct seasonal pattern of the ratio of soil respiration to total ecosystem respiration in a spruce-dominated forest. Glob Chang Biol 12:230–239

    Article  Google Scholar 

  • De Vries FT, Hoffland E, van Eekeren N, Brussaard L, Bloem J (2006) Fungal/bacterial ratios in grasslands with contrasting nitrogen management. Soil Biol Biochem 38:2092–2103

    Article  Google Scholar 

  • DeLuca TH, Zackrisson O, Gundale MJ, Nilsson M-C (2008) Ecosystem feedbacks and nitrogen fixation in boreal forests. Science 30:1181. doi:10.1126/science.1154836

    Article  Google Scholar 

  • Demoling F, Nilsson LO, Bååth E (2008) Bacterial and fungal response to nitrogen fertilization in three coniferous forest soils. Soil Biol Biochem 40:370–379

    Article  Google Scholar 

  • Dise NB, Wright RF (1995) Nitrogen leaching from European forests in relation to nitrogen deposition. For Ecol Manag 71:153–161

    Article  Google Scholar 

  • Driscoll CT, Likens GE, Church MR (1998) Recovery of surface waters in the northeastern U.S. from decreases in atmospheric deposition of sulfur. Water Air Soil Pollut 105:319–329

    Article  Google Scholar 

  • Driscoll CT, Driscoll KM, Roy KM, Mitchell MJ (2003) Chemical response of lakes in the Adirondack region of New York to declines in acidic deposition. Environ Sci Technol 37:2036–2042

    Article  Google Scholar 

  • Ekschmitt K, Kandeler E, Poll C, Brune A, Buscot F, Friedrich M, Gleixner G, Hartmann A, Kästner M, Marhan S, Miltner A, Scheu S, Wolters V (2008) Soil-carbon preservation through habitat constraints and biological limitations on decomposer activity. J Plant Nutr Soil Sci 171:27–35

    Article  Google Scholar 

  • Ekström SM, Kritzberg ES, Kleja DB, Larsson N, Nilsson PA, Graneli W, Bergkvist B (2011) Effect of acid deposition on quantity and quality of dissolved organic matter in soil–water. Environ Sci Technol 45:4733–4739

    Article  Google Scholar 

  • Emmett BA (2007) Nitrogen saturation of terrestrial ecosystems: some recent findings and their implications for our conceptual framework. Water Air Soil Pollut Focus 7:99–109

    Article  Google Scholar 

  • Evans CD, Cullen JM, Alewell C, Marchetto A, Moldan F, Kopáček J, Prechtel A, Rogora M, Veselý J, Wright RF (2001) Recovery from acidification in European surface waters. Hydrol Earth Syst Sci 5:283–297

    Article  Google Scholar 

  • Evans CD, Reynolds B, Jenkins A, Helliwell RC, Curtis CJ, Goodale CL, Ferrier RC, Emmett BA, Pilkington MG, Caporn SJM, Carroll JA, Norris D, Davies J, Coull MC (2006) Evidence that soil carbon pool determines susceptibility of semi-natural ecosystems to elevated nitrogen leaching. Ecosystems 9:453–462

    Article  Google Scholar 

  • Evans CD, Norris D, Ostle N, Grant H, Rowe EC, Curtis CJ, Reynolds B (2008) Rapid immobilisation and leaching of wet-deposited nitrate in upland organic soils. Environ Pollut 156:636–643

    Article  Google Scholar 

  • Evans CD, Jones TG, Burden A, Ostle N, Zieliński P, Cooper MDA, Peacock M, Clark JM, Oulehle F, Cooper D, Freeman C (2012) Acidity controls on dissolved organic carbon mobility in organic soils. Glob Chang Biol 18(11):3317–3331

    Article  Google Scholar 

  • Frey SD, Knorr M, Parrent JL, Simpson RT (2004) Chronic nitrogen enrichment affects the community structure and function of the soil microbial community in temperate hardwood and pine forests. For Ecol Manag 196:159–171

    Article  Google Scholar 

  • Galloway JN, Dentener FJ, Capone DG, Boyer EW, Howarth RW, Seitzinger SP, Asner GP, Cleveland CC, Green PA, Holland EA, Karl DM, Michaels AF, Porter JH, Townsend AR, Vörösmarty CJ (2004) Nitrogen cycles: past, present, and future. Biogeochemistry 70:153–226

    Article  Google Scholar 

  • Gärdenäs AI, Ågren GI, Bird JA, Clarholm M, Hallin S, Ineson P, Kätterer T, Knicker H, Nilsson SI, Näsholm T, Ogle S, Paustian K, Persson T, Stendahl J (2011) Knowledge gaps in soil carbon and nitrogen interactions—from molecular to global scale. Soil Bio Biochem 43:702–717

    Article  Google Scholar 

  • Gauci V, Matthews E, Dise N, Walter B, Koch D, Granberg G, Vile M (2004) Sulfur pollution suppression of the wetland methane source in the 20th and 21st centuries. Proc Natl Acad Sci USA 101:12583–12587

    Article  Google Scholar 

  • Gjessing ET, Riise G, Lydersen E (1998) Acid rain and natural organic matter (NOM). Acta Hydrochim Hydrobiol 26:131–136

    Article  Google Scholar 

  • Goodale CL, Aber JD, McDowell WH (2000) Long-term effects of disturbance on organic and inorganic nitrogen export in the White Mountains, New Hampshire. Ecosystems 3:433–450

    Article  Google Scholar 

  • Goodale CL, Aber JD, Vitousek PM, McDowell WH (2005) Long-term decreases in stream nitrate: successional causes unlikely; possible links to DOC? Ecosystems 8:334–337

    Article  Google Scholar 

  • Göransson A, Eldhuset TD (1991) Effects of aluminium on growth and nutrient uptake of small Picea abies and Pinus sylvestris plants. Trees 5:136–142

    Article  Google Scholar 

  • Gundersen P, Emmett BA, Kjønaas OJ, Koopmans CJ, Tietema A (1998) Impact of nitrogen deposition on nitrogen cycling in forests: a synthesis of NITREX data. For Ecol Manag 101:37–55

    Article  Google Scholar 

  • Hagedorn F, Mohn J, Schleppi P, Flühler H (1999) The role of rapid flow paths for nitrogen transformation in a forest soil: a field study with micro suction cups. Soil Sci Soc Am J 63:1915–1923

    Article  Google Scholar 

  • Hedin LO, von Fischer JC, Ostrom NE, Kennedy BP, Brown MG, Robertson GP (1998) Thermodynamic constraints on nitrogen transformations and other biogeochemical processes at soil-stream interfaces. Ecology 79:684–703

    Google Scholar 

  • Heim A, Luster J, Brunner I, Frey B, Frossard E (2000) Effects of aluminium treatment on Norway spruce roots: aluminium binding forms, element distribution, and release of organic substances. Plant Soil 216:103–116

    Article  Google Scholar 

  • Helliwell RC, Coull MC, Davies JJL, Evans CD, Norris D, Ferrier RC, Jenkins A, Reynolds B (2007) The role of catchment characteristics in determining surface water nitrogen in four upland regions in the UK. Hydrol Earth Syst Sci 11:356–371

    Article  Google Scholar 

  • Högberg MN, Chen Y, Högberg P (2007a) Gross nitrogen mineralisation and fungi-to-bacteria ratios are negatively correlated in boreal forests. Biol Fertil Soils 44:363–366

    Article  Google Scholar 

  • Högberg MN, Högberg P, Myrold DD (2007b) Is microbial community composition in boreal forest soils determined by pH, C-to-N ratio, the trees, or all three? Oecologia 150:590–601

    Article  Google Scholar 

  • Högberg MN, Briones MJI, Keel SG, Metcalfe DB, Campbell C, Midwood AJ, Thornton B, Hurry V, Linder S, Näsholm T, Högberg P (2010) Quantification of effects of season and nitrogen supply on tree below-ground carbon transfer to ectomycorrhizal fungi and other soil organisms in a boreal pine forest. New Phytol 187:485–493

    Article  Google Scholar 

  • Hruška J, Krám P, McDowell WH, Oulehle F (2009) Increased dissolved organic carbon (DOC) in central European streams is driven by reductions in ionic strength rather than climate change or decreasing acidity. Environ Sci Technol 43:4320–4326

    Article  Google Scholar 

  • Janssens IA, Dieleman W, Luyssaert S, Subke J-A, Reichstein M, Ceulemans R, Ciais P, Dolman AJ, Grace J, Matteucci G, Papale D, Piao SL, Schulze E-D, Tang J, Law BE (2010) Reduction of forest soil respiration in response to nitrogen deposition. Nat Geosci 3:315–322

    Article  Google Scholar 

  • Johnson NC, Graham J-H, Smith FA (1997) Functioning of mycorrhizal associations along the mutualism–parasitism continuum. New Phytol 135:575–585

    Article  Google Scholar 

  • Kalbitz K, Solinger S, Park J-H, Michalzik B, Matzner E (2000) Controls on the dynamics of dissolved organic matter in soils: a review. Soil Sci 165(4):277–304

    Article  Google Scholar 

  • Kalbitz K, Schwesig D, Rethemeyer J, Matzner E (2005) Stabilization of dissolved organic matter by sorption to the mineral soil. Soil Biol Biochem 37:1319–1331

    Article  Google Scholar 

  • Knorr M, Frey SD, Curtis PS (2005) Nitrogen additions and litter decomposition: a meta-analysis. Ecology 86(12):3252–3257

    Article  Google Scholar 

  • Kopáček J, Posch M (2011) Anthropogenic nitrogen emissions during the Holocene and their possible effects on remote ecosystems. Glob Biogeochem Cycl 25: GB2017. doi:10.1029/2010GB003779

  • Kopáček J, Stuchlík E, Straškrabová V, Pšenáková P (2000) Factors governing nutrient status of mountain lakes in the Tatra Mountains. Freshw Biol 43:369–383

    Article  Google Scholar 

  • Kopáček J, Stuchlík E, Wright RF (2005) Long-term trends and spatial variability in nitrate leaching from alpine catchment-lake ecosystems in the Tatra Mountains (Slovakia-Poland). Environ Pollut 136:89–101

    Article  Google Scholar 

  • Kopáček J, Posch M, Hejzlar J, Oulehle F, Volková A (2012) An elevation-based regional model for interpolating sulphur and nitrogen deposition. Atmos Environ 50:287–296

    Article  Google Scholar 

  • Lindahl BO, Taylor AFS, Finlay RD (2002) Defining nutritional constraints on carbon cycling in boreal forests—towards a less “phytocentric” perspective. Plant Soil 242:123–135

    Article  Google Scholar 

  • Lovett GM, Goodale CL (2011) A new conceptual model of nitrogen saturation based on experimental nitrogen addition to an oak forest. Ecosystems 14:615–631

    Article  Google Scholar 

  • Madigan MT, Martinko JM, Stahl DA, Clark DP (2010) Brock biology of microorganisms, 13th edn. Benjamin Cummings, Boston

    Google Scholar 

  • Majer V, Cosby BJ, Kopáček J, Veselý J (2003) Modelling reversibility of Central European Mountain Lakes from acidification: part I—the Bohemian forest. Hydrol Earth Syst Sci 7:494–509

    Article  Google Scholar 

  • Mara D, Horan NJ (2003) Handbook of water and wastewater microbiology. Academic Press, London

    Google Scholar 

  • Meiwes KJ, Meesenburg H, Eichhorn J, Jacobsen C, Khanna PK (2009) Changes in C and N contents of soils under beech forests over a period of 35 years. In: Brumme R, Khanna PK (eds) Functioning and management of European Beech ecosystems. Springer, Berlin, pp 49–63

    Chapter  Google Scholar 

  • Moldan F, Wright RF (2011) Nitrogen leaching and acidification during 19 years of NH4NO3 additions to a coniferous-forested catchment at Gårdsjön, Sweden (NITREX). Environ Pollut 159:431–440

    Article  Google Scholar 

  • Monteith DT, Stoddard JL, Evans CD, de Wit HA, Forsius M, Høgåsen T, Wilander A, Skjelkvåle BL, Jeffries DS, Vuorenmaa J, Keller B, Kopáček J, Veselý J (2007) Dissolved organic carbon trends resulting from changes in atmospheric deposition chemistry. Nature 450:537–540

    Article  Google Scholar 

  • Monteith DT, Evans CD, Henrys P, Simpson GL, Malcolm IA (2012) Trends in the hydro-chemistry of acid-sensitive surface waters in the UK 1988–2008. Ecol Indic. doi:10.1016/j.ecolind.2012.08.013

  • Mörth C-M, Torssander P, Kjønaas JO, Stuanas AO, Moldan F, Giesler R (2005) Mineralization of organic sulfur delays recovery from anthropogenic acidification. Environ Sci Technol 39:5234–5240

    Article  Google Scholar 

  • Mulder J, De Wit HA, Boonen HWJ, Bakken LR (2001) Increased levels of aluminium in forest soils: effects on the stores of soil organic carbon. Water Air Soil Pollut 130:989–994

    Article  Google Scholar 

  • Nadelhoffer KJ (2000) The potential effects of nitrogen deposition on fine-root production in forest ecosystems. New Phytol 147:131–139

    Article  Google Scholar 

  • Navrátil T, Kurz D, Krám P, Hofmeister J, Hruška J (2007) Acidification and recovery of soil at a heavily impacted forest catchment (Lysina, Czech Republic)—SAFE modeling and field results. Ecol Model 205:464–474

    Article  Google Scholar 

  • Nierop KGJ, Jansen B, Verstraten JM (2002) Dissolved organic matter, aluminium and iron interactions: precipitation induced by metal/carbon ratio, pH and competition. Sci Total Environ 300:201–211

    Article  Google Scholar 

  • Nordin A, Högberg P, Näsholm T (2001) Soil nitrogen form and plant nitrogen uptake along a boreal forest productivity gradient. Oecologia 129:125–132

    Article  Google Scholar 

  • Novák M, Kirchner JW, Groscheová H, Havel M, Černý J, Krejčí R, Buzek F (2000) Sulfur isotope dynamics in two central European watersheds affected by high atmospheric deposition of SO x . Geochim Cosmochim Acta 64(3):367–383

    Article  Google Scholar 

  • Novák M, Buzek F, Harrison AF, Přechová E, Jačková I, Fottová D (2003) Similarity between C, N and S stable isotope profiles in European spruce forest soils: implications for the use of δ34S as a tracer. Appl Geochem 18:765–779

    Article  Google Scholar 

  • Novák M, Michel RL, Přechová E, Štěpánová M (2004) The missing flux in a 35S budget for the soils of a small polluted catchment. Water Air Soil Pollut 4:517–529

    Article  Google Scholar 

  • Novák M, Kirchner JW, Fottová D, Prechová E, Jačková I, Krám P, Hruška J (2005) Isotopic evidence for processes of sulfur retention/release in 13 forested catchments spanning a strong pollution gradient (Czech Republic, Central Europe). Glob Biogeochem Cycl 19:GB4012. doi:10.1029/2004GB002396

  • Oulehle F, McDowell WH, Aitkenhead-Peterson JA, Krám P, Hruška J, Navrátil T, Buzek F, Fottová D (2008) Long-term trends in stream nitrate concentrations and losses across watersheds undergoing recovery from acidification in the Czech Republic. Ecosystems 11:410–425

    Article  Google Scholar 

  • Oulehle F, Evans CD, Hofmeister J, Krejčí R, Tahovská K, Persson T, Cudlín P, Hruška J (2011) Major changes in forest carbon and nitrogen cycling caused by declining sulphur deposition. Glob Chang Biol 17(10):3115–3129

    Article  Google Scholar 

  • Pastor J, Aber JD, McClaugherty CA, Melillo JM (1984) Aboveground production and N and P cycling along a nitrogen mineralization gradient on Blackhawk Island, Wisconsin. Ecology 65:256–268

    Article  Google Scholar 

  • Perakis SS, Hedin LO (2002) Nitrogen loss from unpolluted South American forests mainly via dissolved organic compounds. Nature 415:416–419

    Article  Google Scholar 

  • Pilkington MG, Caporn SJM, Carroll JA, Cresswell N, Lee JA, Ashenden TW, Brittain SA, Reynolds B, Emmett BA (2005) Effects of increased deposition of atmospheric nitrogen on an upland moor: leaching of N species and soil solution. Environ Pollut 135:29–40

    Article  Google Scholar 

  • Prechtel A, Alewell C, Armbruster M, Bittersohl J, Cullen JM, Evans CD, Helliwell RC, Kopáček J, Marchetto A, Matzner E, Messenburg H, Moldan F, Moritz K, Veselý J, Wright RF (2001) Response of sulphur dynamics in European catchments to decreasing sulphate deposition. Hydrol Earth Syst Sci 5:311–325

    Article  Google Scholar 

  • Ramirez KS, Lauber CL, Knight R, Bradford MA, Fierer N (2010) Consistent effects of nitrogen fertilization on soil bacterial communities in contrasting systems. Ecology 91(12):3463–3470

    Article  Google Scholar 

  • Reuss JO, Johnson DW (1986) acid deposition, soil and waters. Ecological studies, vol 50. Springer, New York

  • Rütting T, Boeckx P, Müller C, Klemedtsson L (2011) Assessment of the importance of dissimilatory nitrate reduction to ammonium for the terrestrial nitrogen cycle. Biogeosciences 8:1779–1791

    Article  Google Scholar 

  • Šantrůčková H, Tahovská K, Kopáček J (2009) Nitrogen transformations and pools in N-saturated mountain spruce forest soils. Biol Fertil Soil 45:395–404

    Article  Google Scholar 

  • Scheel T, Dörfler C, Kalbitz K (2007) Precipitation of dissolved organic matter by aluminum stabilizes carbon in acidic forest soils. Soil Sci Soc Am J 71:64–74

    Google Scholar 

  • Schimel JP, Bennett J (2004) Nitrogen mineralization: challenges of a changing paradigm. Ecology 85(3):591–602

    Article  Google Scholar 

  • Schmidt MW, Torn MS, Abiven S, Dittmar T, Guggenberger G, Janssens IA, Kleber M, Kögel-Knabner I, Lehmann J, Manning DA, Nannipieri P, Rasse DP, Weiner S, Trumbore SE (2011) Persistence of soil organic matter as an ecosystem property. Nature 478:49–56

    Article  Google Scholar 

  • Sinsabaugh RL (2010) Phenol oxidase, peroxidase and organic matter dynamics of soil. Soil Biol Biochem 42:391–404

    Article  Google Scholar 

  • Smith SJ, van Aardenne J, Klimont Z, Andres RJ, Volke A, Delgado Arias S (2011) Anthropogenic sulfur dioxide emissions: 1850–2005. Atmos Chem Phys 11:1101–1116

    Article  Google Scholar 

  • Stoddard JL (1994) Long-term changes in watershed retention of nitrogen: its causes and aquatic consequences. In: Baker LA (ed) Environmental chemistry of lakes and reservoirs. ACS advances in chemistry series 237. American Chemical Society, Washington, DC, pp 223–284

  • Stoddard JL, Jeffries DS, Lükewille A, Clair TA, Dillon PJ, Driscoll CT, Forsius M, Johannessen M, Kahl JS, Kellogg JH, Kemp A, Mannio J, Monteith D, Murdoch PS, Patrick S, Rebsdorf A, Skjelkvåle BL, Stainton MP, Traaen T, van Dam H, Webster KE, Wieting J, Wilander A (1999) Regional trends in aquatic recovery from acidification in North America and Europe. Nature 401:575–578

    Article  Google Scholar 

  • Stumm W (1992) Chemistry of the solid-water interface. Processes at the mineral-water and particle-water interface in natural systems. Wiley, New York

  • Taylor PG, Townsend AR (2010) Stoichiometric control of organic carbon–nitrate relationships from soils to the sea. Nature 464:1178–1181

    Article  Google Scholar 

  • Tietema A (1998) Microbial carbon and nitrogen dynamics in coniferous forest floor material collected along a European nitrogen deposition gradient. For Ecol Manag 101:29–36

    Article  Google Scholar 

  • Tipping E, Hurley MA (1998) A model of solid-solution interactions in acid organic soils, based on the complexation properties of humic substances. Eur J Soil Sci 39:505–519

    Google Scholar 

  • Toberman H, Freeman C, Artz RE, Evans CD, Fenner N (2008) Impeded drainage stimulates extracellular phenol oxidase activity in riparian peat cores. Soil Use Manag 24:357–365

    Article  Google Scholar 

  • Torssander P, Mörth C-M (1998) Sulphur dynamics in the roof experiment at Lake Gardsjön deduced from sulphur and oxygen isotope ratios in sulphate. In: Hultberg H, Skeffington R (eds) Experimental reversal of acid rain effects. The Gardsjön Roof Project. Wiley, Chichester, pp 185–206

    Google Scholar 

  • Treseder KK (2004) A meta-analysis of mycorrhizal responses to nitrogen, phosphorus, and atmospheric CO2 in field studies. New Phytol 164:347–355

    Article  Google Scholar 

  • Veselý J, Majer V, Norton SA (2002) Heterogeneous response of central European streams to decreased acidic atmospheric deposition. Environ Pollut 120:275–281

    Article  Google Scholar 

  • Vitousek PM (2004) Nutrient cycling and limitation. Hawai’i as a model system. Princeton University Press, Princeton

    Google Scholar 

  • Waldrop MP, Zak DR, Sinsabaugh RL, Gallo M, Lauber C (2004) Nitrogen deposition modifies soil carbon storage through changes in microbial enzymatic activity. Ecol Appl 14:1172–1177

    Article  Google Scholar 

  • Yin S, Shen Q, Tang Y, Cheng L (1998) Reduction of nitrate to ammonium in selected paddy soils in China. Pedosphere 8:221–228

    Google Scholar 

  • Zak DR, Pregitzer KS, Burton AJ, Edwards IP, Kellner H (2011) Microbial responses to a changing environment: implications for the future functioning of terrestrial ecosystems. Fungal Ecol 4:386–395

    Article  Google Scholar 

Download references

Acknowledgments

This study was supported by the Grant Agency of the Czech Republic (project No. P504/12/1218). We appreciate three anonymous reviewers who significantly improved our presentation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiří Kopáček.

Additional information

Responsible editor: Cory Cleveland

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kopáček, J., Cosby, B.J., Evans, C.D. et al. Nitrogen, organic carbon and sulphur cycling in terrestrial ecosystems: linking nitrogen saturation to carbon limitation of soil microbial processes. Biogeochemistry 115, 33–51 (2013). https://doi.org/10.1007/s10533-013-9892-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10533-013-9892-7

Keywords

Navigation