Skip to main content
Log in

Nitrogen transformations and pools in N-saturated mountain spruce forest soils

  • Original Paper
  • Published:
Biology and Fertility of Soils Aims and scope Submit manuscript

Abstract

Nitrogen leaching persists in mountain forests of Europe even in the presence of decreasing N depositions. We have hypothesized that this leaching is linked to soil N transformations occurring over the whole year, even at 0°C temperatures. The aims were to estimate (1) the effect of temperature on N transformations and (2) N pools and fluxes. The study sites are situated in the Bohemian Forest (Czech Republic). Litter, humus, and 0–10-cm mineral layers were sampled in early spring, and the effect of temperature on net nitrification, net ammonification, and microbial N immobilization were measured in a short-term incubation experiment without substrate addition. Nitrogen pools were calculated from the concentrations of N forms in the soil and soil pool weights, while daily N fluxes were calculated from daily net rates of processes and soil pool weights. Relationships between temperature and net nitrification, net ammonification, and microbial N immobilization did not follow the Arrhenius type equation; all processes were active close to 0°C, indicating that microbial N transformations occur over the whole year. Microbial N immobilization rate was generally greater than N mineralization rate. The microbial N pool was significantly larger than mineral N pools. Organic layers containing tens of grams of available N per square meter contributed more than 70% to the available N in the soil profile. Daily N fluxes were related to N pools. On average, N fluxes represented daily mineral and microbial N pool changes of 1.14 and 1.95%, respectively. The effect of microbial composition on the C/N ratio of microbial biomass and respiration is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aber JD, Melillo JM, McClaugherty CA, Eshleman KN (1983) Nitrogen cycling in deciduous forests. Ecol Bull Stockh 33:427–442

    Google Scholar 

  • Aber J, McDowell W, Nadelhoffer K, Magill A, Berntson G, Kamakea M, McNulty S, Currie W, Rustad L, Fernandez I (1998) Nitrogen saturation in temperate forest ecosystems. Bioscience 48:921–934 doi:10.2307/1313296

    Article  Google Scholar 

  • Anderson TH, Domsch KH (1986) Carbon assimilation and microbial activity in soil. Z Pflanzenernahr Bodenkd 149:457–468 doi:10.1002/jpln.19861490409

    Article  CAS  Google Scholar 

  • Binkley D, Hart SC (1989) The components of nitrogen availability assessments in forest soils. Adv Soil Sci 10:57–112

    CAS  Google Scholar 

  • Binkley D, Stottlemyer R, Suarez F, Cortina J (1994) Soil nitrogen availability in some arctic ecosystems in northwest Alaska: Responses to temperature and moisture. Ecoscience 1:64–70

    Google Scholar 

  • Bradley RL (2001) An alternative explanation for the post-disturbance NO3- flush in some forest ecosystems. Ecol Lett 4:412–416 doi:10.1046/j.1461-0248.2001.00243.x

    Article  Google Scholar 

  • Cabrera ML, Beare MH (1993) Alkaline persulfate oxidation for determining total nitrogen in microbial biomass extracts. Soil Sci Soc Am J 57:1007–1012

    CAS  Google Scholar 

  • Carter MR (1991) Ninhydrin—reactive N released by the fumigation–extraction method as a measure of microbial biomass under field conditions. Soil Biol Biochem 23:139–143 doi:10.1016/0038-0717(91)90126-5

    Article  CAS  Google Scholar 

  • Chapman SJ, Gray TRG (1981) Endogenous metabolism and macromolecular-composition of arthrobacter-globiformis. Soil Biol Biochem 13:11–18 doi:10.1016/0038-0717(81)90095-X

    Article  CAS  Google Scholar 

  • Chapman SJ, Gray TRG (1986) Importance of cryptic growth, yield factors and maintenance energy in models of microbial growth in soil. Soil Biol Biochem 18:1–4 doi:10.1016/0038-0717(86)90095-7

    Article  Google Scholar 

  • Corre MD, Beese FO, Brumme R (2003) Soil nitrogen cycle in high nitrogen deposition forest: Changes under nitrogen saturation and liming. Ecol Appl 13:287–298 doi:10.1890/1051-0761(2003)013[0287:SNCIHN]2.0.CO;2

    Article  Google Scholar 

  • Davidson EA, Hart SC, Firestone MK (1992) Internal cycling of nitrate in soils of a mature coniferous forest. Ecology 73:1148–1156 doi:10.2307/1940665

    Article  Google Scholar 

  • Fernandez IJ, Simmons JA, Briggs RD (2000) Indices of forest floor nitrogen status along a climate gradient in Maine, USA. For Ecol Manage 134:177–187 doi:10.1016/S0378-1127(99)00256-X

    Article  Google Scholar 

  • Fitzhugh RD, Driscoll CT, Groffman PM, Tierney GL, Fahey TJ, Hardy JP (2001) Effects of soil freezing disturbance on soil solution nitrogen, phosphorus, and carbon chemistry in a northern hardwood ecosystem. Biogeochemistry 56:215–238 doi:10.1023/A:1013076609950

    Article  CAS  Google Scholar 

  • Groffman PM, Driscoll CT, Fahey TJ, Hardy JP, Fitzhugh RD, Tierney GL (2001) Effects of mild winter freezing on soil nitrogen and carbon dynamics in a northern hardwood forest. Biogeochemistry 56:191–213 doi:10.1023/A:1013024603959

    Article  CAS  Google Scholar 

  • Gundersen P, Schmidt IK, Raulund-Rasmussen K (2006) Leaching of nitrate from temperate forests—effects of air pollution and forest management. Environ Rev 14:1–57 doi:10.1139/a05-015

    Article  CAS  Google Scholar 

  • Högberg MN, Bååth E, Nordgren A, Arnebrant K, Högberg P (2003) Contrasting effects of nitrogen availability on plant carbon supply to mycorrhizal fungi and saprotrophs—a hypothesis based on field observations in boreal forest. New Phytol 160:225–238 doi:10.1046/j.1469-8137.2003.00867.x

    Article  CAS  Google Scholar 

  • Högberg MN, Chen Y, Högberg P (2007a) Gross nitrogen mineralisation and fungi-to-bacteria ratios are negatively correlated in boreal forests. Biol Fertil Soils 44:363–366 doi:10.1007/s00374-007-0215-9

    Article  Google Scholar 

  • Högberg MN, Högberg P, Myrold DD (2007b) Is microbial community composition in boreal forest soils determined by pH, C-to-N ratio, the trees, or all three? Oecologia 150:590–601 doi:10.1007/s00442-006-0562-5

    Article  PubMed  Google Scholar 

  • Kennedy IR (1992) Acid soil and acid rain. Wiley, New York

    Google Scholar 

  • Kettle H, Kopáček J, Hejzlar J (2003) Modelling air temperature at Čertovo Lake back to 1781. Silva Gabreta 9:15–32

    Google Scholar 

  • Kopáček J, Hejzlar J (1998) Water chemistry of surface tributaries to the acidified mountain lakes in the Bohemian Forest. Silva Gabreta 2:175–197

    Google Scholar 

  • Kopáček J, Veselý J, Stuchlík E (2001) Upshur and nitrogen fluxes and budgets in the Bohemian Forest and Tatra Mountains during the Industrial Revolution (1850–2000). Hydrol Earth Syst Sci 5:391–405

    Article  Google Scholar 

  • Kopáček J, Kaňa J, Šantrůčková H, Porcal P, Hejzlar J, Picek T, Šimek M, Veselý J (2002a) Physical, chemical, and biochemical characteristics of soils in watersheds of the Bohemian Forest lakes: II. Čertovo and Černé Lakes. Silva Gabreta 8:63–93

    Google Scholar 

  • Kopáček J, Kaňa J, Šantrůčková H, Porcal P, Hejzlar J, Picek T, Veselý J (2002b) Physical, chemical, and biochemical characteristics of soils in watersheds of the Bohemian Forest lakes: I. Plešné Lake. Silva Gabreta 8:43–62

    Google Scholar 

  • Kopáček J, Turek J, Hejzlar J, Kaňa J, Porcal P (2006a) Element fluxes in watershed-lake ecosystems recovering from acidification: Čertovo Lake, the Bohemian Forest, 2001–2005. Biologia (Bratisl) 61(Suppl 20):S413–S426 doi:10.2478/s11756-007-0066-8

    Article  Google Scholar 

  • Kopáček J, Turek J, Hejzlar J, Kaňa J, Porcal P (2006b) Element fluxes in watershed-lake ecosystems recovering from acidification: Plešné Lake, the Bohemian Forest, 2001–2005. Biologia (Bratisl) 61(Suppl 20):S427–S440 doi:10.2478/s11756-007-0067-7

    Article  Google Scholar 

  • Lawrence GB, David MB, Shortle WC (1995) A new mechanism for calcium loss in forest floor soils. Nature 378:162–165 doi:10.1038/378162a0

    Article  CAS  Google Scholar 

  • McGill WB, Cole CV (1981) Comparative aspects of cycling of organic C, N, S and P through soil organic-matter. Geoderma 26:267–286 doi:10.1016/0016-7061(81)90024-0

    Article  CAS  Google Scholar 

  • McNulty SG, Aber JD, Newman SD (1996) Nitrogen saturation in a high elevation New England spruce-fir stand. For Ecol Manage 84:109–121 doi:10.1016/0378-1127(96)03742-5

    Article  Google Scholar 

  • Melillo JM (1981) Nitrogen cycling in deciduous forest. Ecol Bull Stockh 33:427–442

    CAS  Google Scholar 

  • Micks P, Aber JD, Boone RD, Davidson EA (2004) Short-term respiration and nitrogen immobilization response to nitrogen applications in control and nitrogen-enriched temperate forests. For Ecol Manage 196:57–70 doi:10.1016/j.foreco.2004.03.012

    Article  Google Scholar 

  • Mulder J, De Wit HA, Boonen HWJ, Bakken LR (2001) Increased levels of aluminium in forest soils: Effects on the stores of soil organic carbon. Water Air Soil Pollut 130:989–994 doi:10.1023/A:1013987607826

    Article  Google Scholar 

  • Nadelhoffer KJ, Giblin AE, Shaver GR, Laundre JA (1991) Effects of temperature and substrate quality on element mineralization in 6 artic soils. Ecology 72:242–253 doi:10.2307/1938918

    Article  Google Scholar 

  • Oulehle F, Hofmeister J, Cudlín P, Hruška J (2006) The effect of reduced atmospheric deposition on soil and soil solution chemistry at a site subjected to long-term acidification, Načetín, Czech Republic. Sci Total Environ 370:532–544 doi:10.1016/j.scitotenv.2006.07.031

    Article  PubMed  CAS  Google Scholar 

  • Pirt SJ (1975) Principles of microbe and cell cultivation. Blackwell, Oxford

    Google Scholar 

  • Puhe J, Ulrich B (2001) Global climate change and human impacts on forest ecosystems. Springer, Berlin

    Google Scholar 

  • Rosswall T, Schnürer J, Söderlund S (1986) Interactions of acidity, aluminium ions and microorganisms. In: Jensen V, Kjøller A, Sørensen LH (eds) Microbial communities in soil. Elsevier, London, pp 395–403

    Google Scholar 

  • Šantrůčková H, Vrba J, Picek T, Kopáček J (2004) Soil biochemical activity and P transformations and losses from acidified forest soils. Soil Biol Biochem 36:1569–1576 doi:10.1016/j.soilbio.2004.07.015

    Article  CAS  Google Scholar 

  • Scheel T, Doerfler C, Kalbitz K (2007) Precipitation of dissolved organic matter by aluminum stabilizes carbon in acidic forest soils. Soil Sci Soc Am J 71:64–74

    CAS  Google Scholar 

  • Shaw A, Karlsson CH, Moller J (1988) An introduction to the use of flow injection analysis. Tecator, Sweden

    Google Scholar 

  • Skopcová K, Šantrůčková H (2006) The effect of temperature on nitrogen transformations in mountain forest soils of Plešné, Černé, and Čertovo Lake watersheds. Silva Gabreta 12:3–14

    Google Scholar 

  • Sprent JI (1987) The ecology of the nitrogen cycle. Cambridge University Press, Cambridge

    Google Scholar 

  • Standing D, Baggs EM, Wattenbach M, Smith P, Killham K (2007) meeting the challenge of upscaling up peocesses in the plant–soil–microbe system. Biol Fertil Soils 44:245–257 doi:10.1007/s00374-007-0249-z

    Article  Google Scholar 

  • Stark JM, Hart SC (1997) High rates of nitrification and nitrate turnover in undisturbed coniferous forests. Nature 385:61–64 doi:10.1038/385061a0

    Article  CAS  Google Scholar 

  • Ste-Marie C, Paré D (1999) Soil, pH and N availability effects on net nitrification in the forest floors of a range of boreal forest stands. Soil Biol Biochem 31:1579–1589 doi:10.1016/S0038-0717(99)00086-3

    Article  CAS  Google Scholar 

  • Strader RH, Binkley D (1989) Mineralization and immobilization of soil nitrogen in two Douglas-fir stands 15 and 22 years after nitrogen fertilization. Can J Res 19:798–801 doi:10.1139/x89-121

    Article  Google Scholar 

  • Tietema A (1998) Microbial carbon and nitrogen dynamic in coniferous forest floor material collected along a European nitrogen deposition gradient. For Ecol Manage 101:29–36 doi:10.1016/S0378-1127(97)00122-9

    Article  Google Scholar 

  • Vance ED, Chapin FS III (2001) Substrate limitations to microbial activity in taiga forest floors. Soil Biol Biochem 33:173–188 doi:10.1016/S0038-0717(00)00127-9

    Article  CAS  Google Scholar 

  • Vitousek PM, Gosz JR, Grier CC, Melillo JM, Reiners WA (1982) A comparative analysis of potential nitrification and nitrate mobility in forest ecosystems. Ecol Monogr 52:155–177 doi:10.2307/1942609

    Article  CAS  Google Scholar 

  • Wallenstein MD, McNulty S, Fernandez IJ, Boggs J, Schlesinger WH (2006) Nitrogen fertilization decreases forest soil fungal and bacterial biomass in three long-term experiments. For Ecol Manage 222:459–468 doi:10.1016/j.foreco.2005.11.002

    Article  Google Scholar 

  • Zhong ZK, Makeschin F (2003) Soluble organic nitrogen in temperate forest soils. Soil Biol Biochem 35:333–338 doi:10.1016/S0038-0717(02)00252-3

    Article  CAS  Google Scholar 

  • Zhu WX, Carreiro MM (1999) Chemoautotrophic nitrification in acidic forest soils along an urban-to-rural transect. Soil Biol Biochem 31:1091–11 doi:10.1016/S0038-0717(99)00025-5

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This study was supported by project GA CR 206/07/1200, MSM 6007665801, and project CZ 0051 (01-04/05-081 IP-65 MZP). We acknowledge the laboratory and field assistance provided by our colleagues and students, the contribution by Keith Edwards for language correction, and the contribution by the Editor-In-Chief for improving the style of the manuscript. We also thank the authorities of both NP and CHKO Šumava for the permission to carry out this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hana Šantrůčková.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Šantrůčková, H., Tahovská, K. & Kopáček, J. Nitrogen transformations and pools in N-saturated mountain spruce forest soils. Biol Fertil Soils 45, 395–404 (2009). https://doi.org/10.1007/s00374-008-0349-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00374-008-0349-4

Keywords

Navigation