Skip to main content

Advertisement

Log in

Topography strongly affects atmospheric deposition and canopy exchange processes in different types of wet lowland rainforest, Southwest Costa Rica

  • Published:
Biogeochemistry Aims and scope Submit manuscript

Abstract

Bulk precipitation and throughfall were collected in a wet lowland rainforest in SW Costa Rica on an event basis to allow modelling the contributions of dry deposition and canopy exchange to nutrient inputs and internal cycling of nutrients. Estimates based on bulk precipitation underestimated total atmospheric deposition to tropical rainforests by up to 10-fold ignoring the contributions of dry deposition. Canopy exchange contributed most of the aboveground inputs to the forest soil of Na+, about half for K+, 10% for P and Mg2+ and negligible for N, C and other elements. Tree species composition did not account for the differences found in net throughfall between forest sites, and vegetation structure (plant area index) had only a small effect on net throughfall. Forest regrowth affected net throughfall through reduced soil fertility and differences in leaf traits. Topography most significantly affected net throughfall via increased dry deposition at sites of higher elevation and via soil fertility and increased canopy exchange at down slope sites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Artaxo P, Fernandes ET, Martins JV, Yamasoe MA, Hobbs PV, Maenhaut W, Longo KM, Castanho A (1998) Large-scale aerosol source apportionment in Amazonia. J Geophys Res Atmos 103:31837–31847

    Article  Google Scholar 

  • Asman WAH, Sutton MA, Schjorring JK (1998) Ammonia: emission, atmospheric transport and deposition. New Phytol 139:27–48

    Article  Google Scholar 

  • Baker TR, Phillips OL, Malhi Y, Almeida S, Arroyo L, Di Fiore A, Erwin T, Higuchi N, Killeen TJ, Laurance SG, Laurance WF, Lewis SL, Monteagudo A, Neill DA, Vargas PN, Pitman NCA, Silva JNM, Martinez RV (2004a) Increasing biomass in Amazonian forest plots. Philos Trans Roy Soc London Ser B Biol Sci 359:353–365

    Article  Google Scholar 

  • Baker TR, Phillips OL, Malhi Y, Almeida S, Arroyo L, Di Fiore A, Erwin T, Killeen TJ, Laurance SG, Laurance WF, Lewis SL, Lloyd J, Monteagudo A, Neill DA, Patino S, Pitman NCA, Silva JNM, Martinez RV (2004b) Variation in wood density determines spatial patterns in Amazonian forest biomass. Global Change Biol 10:545–562

    Article  Google Scholar 

  • Beringer J, McIlwaine S, Lynch AH, Chapin FS, Bonan GB (2002) The use of a reduced form model to assess the sensitivity of a land surface model to biotic surface parameters. Clim Dyn 19:455–466

    Article  Google Scholar 

  • Campo-Alves J (2003) Nutrient availability and fluxes along a toposequence with tropical dry forest in Mexico. Agrociencia 37:211–219

    Google Scholar 

  • Cavelier J, Jaramillo M, Solis D, deLeon D (1997) Water balance and nutrient inputs in bulk precipitation in tropical montane cloud forest in Panama. J Hydrol 193:83–96

    Article  Google Scholar 

  • Chapin FS III, Matson PA, Mooney HA (2002) Principles of terrestrial ecosystem ecology. Springer-Verlag, New York

    Google Scholar 

  • Chuyong GB, Newbery DM, Songwe NC (2004) Rainfall input, throughfall and stemflow of nutrients in a central African rain forest dominated by ectomycorrhizal trees. Biogeochemistry 67:73–91

    Article  Google Scholar 

  • Clark KL, Nadkarni NM, Schaefer D, Gholz HL (1998) Cloud water and precipitation chemistry in a tropical montane forest, Monteverde, Costa Rica. Atmos Environ 32:1595–1603

    Article  Google Scholar 

  • Clark DA, Brown S, Kicklighter DW, Chambers JQ, Thomlinson JR, Ni J (2001a) Measuring net primary production in forests: concepts and field methods. Ecol Appl 11:356–370

    Article  Google Scholar 

  • Clark DA, Brown S, Kicklighter DW, Chambers JQ, Thomlinson JR, Ni J, Holland EA (2001b) Net primary production in tropical forests: an evaluation and synthesis of existing field data. Ecol Appl 11:371–384

    Article  Google Scholar 

  • Clarke, Gorley RN (2006) PRIMER v6: User manual/tutorial, PRIMER-E, Plymouth UK, 192 pp

  • Cronan CS, Reiners WA (1983) Canopy processing of acidic precipitation by coniferous and hardwood forests in New-England. Oecologia 59:216–223

    Article  Google Scholar 

  • De Schrijver A, Nachtergale L, Staelens J, Luyssaert S, De Keersmaeker L (2004) Comparison of throughfall and soil solution chemistry between a high-density Corsican pine stand and a naturally regenerated silver birch stand. Environ Pollut 131:93–105

    Article  Google Scholar 

  • De Schrijver A, Geudens G, Wuyts K, Staelens J, Gielis L, Verheyen K (2009) Nutrient cycling in two continuous cover scenarios for forest conversion of pine plantations on sandy soil. I. Nutrient cycling via aboveground tree biomass. Can J For Res 39:441–452

    Article  Google Scholar 

  • Delta-T-Devices (1999) Hemiview Canopy Analysis Software V2.1 (1999) Delta-T Devices Ltd. http://www.delta-t.co.uk

  • Dixon RK (1994) Carbon pools and flux of global forest ecosystems (Vol 263, Pg 185, 1994). Science 265:171–171

    Google Scholar 

  • Draaijers GPJ, Erisman JW (1995) A canopy budget model to assess atmospheric deposition from throughfall measurements. Water Air Soil Pollut 85:2253–2258

    Article  Google Scholar 

  • Draaijers GPJ, Vanek R, Bleuten W (1994) Atmospheric deposition in complex forest landscapes. Bound Layer Meteor 69:343–366

    Article  Google Scholar 

  • Draaijers GPJ, Erisman JW, Spranger T, Wyers GP (1996) The application of throughfall measurements for atmospheric deposition monitoring. Atmos Environ 30:3349–3361

    Article  Google Scholar 

  • Draaijers GPJ, Erisman JW, VanLeeuwen NFM, Romer FG, teWinkel BH, Veltkamp AC, Vermeulen AT, Wyers GP (1997) The impact of canopy exchange on differences observed between atmospheric deposition and throughfall fluxes. Atmos Environ 31(3):387–397

    Article  Google Scholar 

  • Eklund TJ, McDowell WH, Pringle CM (1997) Seasonal variation of tropical precipitation chemistry: La Selva, Costa Rica. Atmos Environ 31:3903–3910

    Article  Google Scholar 

  • Field CB, Behrenfeld MJ, Randerson JT, Falkowski P (1998) Primary production of the biosphere: integrating terrestrial and oceanic components. Science 281:237–240

    Article  Google Scholar 

  • Filoso S, Williams MR, Melack JM (1999) Composition and deposition of throughfall in a flooded forest archipelago (Negro River, Brazil). Biogeochemistry 45:169–195

    Google Scholar 

  • Fisch G, Tota J, Machado LAT, Dias M, Lyra RFD, Nobre CA, Dolman AJ, Gash JHC (2004) The convective boundary layer over pasture and forest in Amazonia. Theor Appl Climatol 78:47–59

    Article  Google Scholar 

  • Fürnkranz M, Wanek W, Richter A, Abell G, Rasche F, Sessitsch A (2008) Nitrogen fixation by phyllosphere bacteria associated with higher plants and their colonizing epiphytes of a tropical lowland rainforest of Costa Rica. Isme J 2:561–570

    Article  Google Scholar 

  • Gaige E, Dail DB et al (2007) Changes in canopy processes following whole-forest canopy nitrogen fertilization of a mature spruce-hemlock forest. Ecosystems 10(7):1133–1147

    Article  Google Scholar 

  • Gardner TW, Verdonck D, Pinter NM, Slingerland R, Furlong KP, Bullard TF, Wells SG (1992) Quaternary uplift astride the Aseismic Cocos Ridge, Pacific Coast, Costa-Rica. Geol Soc Am Bull 104:219–232

    Article  Google Scholar 

  • Hansen K, Draaijers GPJ, Ivens W, Gundersen P, Vanleeuwen NFM (1994) Concentration variations in rain and canopy throughfall collected sequentially during individual rain events. Atmos Environ 28:3195–3205

    Article  Google Scholar 

  • Harrington RA, Fownes JH, Vitousek PM (2001) Production and resource use efficiencies in N- and P-limited tropical forests: a comparison of responses to long-term fertilization. Ecosystems 4:646–657

    Article  Google Scholar 

  • Herwitz SR, Levia DF (1997) Mid-winter stemflow drainage from bigtooth aspen (Populus grandidentata Michx) in Central Massachusetts. Hydrol Process 11:169–175

    Article  Google Scholar 

  • Hinko-Najera Umana N, Wanek W (2010) Large canopy exchange fluxes of inorganic and organic nitrogen and preferential retention of nitrogen by epiphytes in a tropical lowland rainforest. Ecosystems 13(3):367–381

    Article  Google Scholar 

  • Holdridge LR (1967) Life zone ecology. Tropical Science Center, San Jose, Costa Rica

    Google Scholar 

  • Hölscher D, Köhler L, Van Dijk AIJM, Bruijnzeel LAS (2004) The importance of epiphytes to total rainfall interception by a tropical montane rainforest in Costa Rica. J Hydrol 292:308–322

    Article  Google Scholar 

  • Hughes RF, Kauffman JB, Jaramillo VJ (1999) Biomass, carbon, and nutrient dynamics of secondary forests in a humid tropical region of Mexico. Ecology 80:1892–1907

    Google Scholar 

  • Johnson DW (1992) Base cations. In: Johnson DW, Lindberg SE (eds) Atmospheric deposition and forest nutrient cycling. Springer-Verlag, New York, pp 233–235

    Chapter  Google Scholar 

  • Kolmer JA, Spaulding EH, Robinson HW (1951) Approved laboratory techniques. Appleton Century Crafts, New York

    Google Scholar 

  • Kopacek J, Turek J, Hejzlar J, Santruckova H (2009) Canopy leaching of nutrients and metals in a mountain spruce forest. Atmos Environ 43:5443–5453

    Article  Google Scholar 

  • Levia DF, Frost EE (2003) A review and evaluation of stemflow literature in the hydrologic and biogeochemical cycles of forested and agricultural ecosystems. J Hydrol 274:1–29

    Article  Google Scholar 

  • Levia DF, Frost EE (2006) Variability of throughfall volume and solute inputs in wooded ecosystems. Prog Phys Geogr 30:605–632

    Article  Google Scholar 

  • Likens GE, Driscoll CT, Buso DC (1996) Long-term effects of acid rain on ecosystems of the Hubbard Brook Experimental Forest. Bull Ecol Soc Am 77:266

    Google Scholar 

  • Lindberg SE, Bredemeier M, Schaefer DA, Qi L (1990) Atmospheric concentrations and deposition of nitrogen and major ions in conifer forests in the United States and Federal Republic of Germany. Atmos Environ 24A:2207–2220

    Google Scholar 

  • Lovett GM (1992) Atmospheric deposition and canopy interactions of nitrogen. In: Johnson DW, Lindberg SE (eds) Atmospheric deposition and forest nutrient cycling. Springer-Verlag, New York, pp 152–166

    Google Scholar 

  • Lovett GM, Lindberg SE (1984) Dry deposition and canopy exchange in a mixed oak forest as determined by analysis of throughfall. J Appl Ecol 21:1013–1027

    Article  Google Scholar 

  • Lovett GM, Lindberg SE (1993) Atmospheric deposition and canopy interactions of nitrogen in forests. Can J For Res—Revue Canadienne De Recherche Forestiere 23:1603–1616

    Article  Google Scholar 

  • Lovett GM, Nolan SS, Driscoll CT, Fahey TJ (1996) Factors regulating throughfall flux in a New Hampshire forested landscape. Can J For Res 26:2134–2144

    Article  Google Scholar 

  • Malhi Y, Baker TR, Phillips OL, Almeida S, Alvarez E, Arroyo L, Chave J, Czimczik CI, Di Fiore A, Higuchi N, Killeen TJ, Laurance SG, Laurance WF, Lewis SL, Montoya LMM, Monteagudo A, Neill DA, Vargas PN, Patino S, Pitman NCA, Quesada CA, Salomao R, Silva JNM, Lezama AT, Martinez RV, Terborgh J, Vinceti B, Lloyd J (2004) The above-ground coarse wood productivity of 104 Neotropical forest plots. Global Change Biol 10:563–591

    Article  Google Scholar 

  • Martinelli LA (2004) A ‘fantasy island’ for tropical biogeochemistry: nutrient cycling and limitation by Peter Vitousek. Princeton University Press, 2004. (232 pages). Trends Ecol Evol 19:295

    Article  Google Scholar 

  • Melillo JM, McGuire AD, Kicklighter DW, Moore B, Vorosmarty CJ, Schloss AL (1993) Global climate-change and terrestrial net primary production. Nature 363:234–240

    Article  Google Scholar 

  • Neter J, Kutner MH, Nachtsheim CJ, Wasserman W (1996) Applied linear statistical models. WCB McGraw-Hill/Irwin, Boston, MA, pp 1408

  • Nobis M (2005) SideLook 1.1—Imaging software for the analysis of vegetation structure with true-colour photographs; http://www.appleco.ch

  • Oliver BG, Thurman EM, Malcolm RL (1983) The contribution of humic substances to the acidity of colored natural-waters. Geochim Cosmochim Acta 47:2031–2035

    Article  Google Scholar 

  • Pamperl S (2001) Der Boden als Standortfaktor eines baumartenreichen Tieflandregenwaldes in Costa Rica. Formal- und Naturwissenschaftliche Fakultät (p 107+). University of Vienna, Vienna

    Google Scholar 

  • Parker GG (1983) Throughfall and stemflow in the forest nutrient cycle. Adv Ecol Res 13:57–133

    Article  Google Scholar 

  • Poorter L, de Plassche MV, Willems S, Boot RGA (2004) Leaf traits and herbivory rates of tropical tree species differing in successional status. Plant Biol 6:746–754

    Article  Google Scholar 

  • Porder S, Clark DA, Vitousek PM (2006) Persistence of rock-derived nutrients in the wet tropical forests of La Selva, Costa Rica. Ecology 87:594–602

    Article  Google Scholar 

  • Prescott CE (2002) The influence of the forest canopy on nutrient cycling. Tree Physiol 22:1193–1200

    Google Scholar 

  • Puckett LJ (1990) Estimates of ion sources in deciduous and coniferous throughfall. Atmos Environ 24:545–555

    Article  Google Scholar 

  • Reich PB, Uhl C, Walters MB, Ellsworth DS (1991) Leaf life-span as a determinant of leaf structure and function among 23 Amazonian tree species. Oecologia 86:16–24

    Article  Google Scholar 

  • Reich PB, Walters MB, Ellsworth DS (1992) Leaf life-span in relation to leaf, plant, and stand characteristics among diverse ecosystems. Ecol Monogr 62:365–392

    Article  Google Scholar 

  • Ruijgrok W, Tieben H, Eisinga P (1997) The dry deposition of particles to a forest canopy: a comparison of model and experimental results. Atmos Environ 31:399

    Article  Google Scholar 

  • Schinner F, Öhlinger R, Kandeler E, Margesin R (eds) (1996) Methods in soil biology. Springer Verlag, Berlin

    Google Scholar 

  • Schroth G, da Silva LF, Wolf MA, Teixeira WG, Zech W (1999) Distribution of throughfall and stemflow in multi-strata agroforestry, perennial monoculture, fallow and primary forest in central Amazonia, Brazil. Hydrol Process 13:1423–1436

    Article  Google Scholar 

  • Schroth G, Elias MEA, Uguen K, Seixas R, Zech W (2001) Nutrient fluxes in rainfall, throughfall and stemflow in tree-based land use systems and spontaneous tree vegetation of central Amazonia. Agric Ecosyst Environ 87:37–49

    Article  Google Scholar 

  • Schuur EAG (2003) Productivity and global climate revisited: the sensitivity of tropical forest growth to precipitation. Ecology 84:1165–1170

    Article  Google Scholar 

  • Staelens J, Houle D, De Schrijver A, Neirynck J, Verheyen K (2008) Calculating dry deposition and canopy exchange with the canopy budget model: review of assumptions and application to two deciduous forests. Water Air Soil Pollut 191:149–169

    Article  Google Scholar 

  • STATSOFT (2005) STATSOFT (2005): STATISTICA for Windows 7.1. Statsoft Inc, Tulsa, Oklahoma

    Google Scholar 

  • Tanner EVJ, Vitousek PM, Cuevas E (1998) Experimental investigation of nutrient limitation of forest growth on wet tropical mountains. Ecology 79:10–22

    Article  Google Scholar 

  • ter Steege H, Pitman NCA, Phillips OL, Chave J, Sabatier D, Duque A, Molino JF, Prevost MF, Spichiger R, Castellanos H, von Hildebrand P, Vasquez R (2006) Continental-scale patterns of canopy tree composition and function across Amazonia. Nature 443:444–447

    Article  Google Scholar 

  • Tobón C, Sevink J, Verstraten JM (2004a) Litterflow chemistry and nutrient uptake from the forest floor in northwest Amazonian forest ecosystems. Biogeochemistry 69:315–339

    Article  Google Scholar 

  • Tobón C, Sevink J, Verstraten JM (2004b) Solute fluxes in throughfall and stemflow in four forest ecosystems in northwest Amazonia. Biogeochemistry 70:1–25

    Article  Google Scholar 

  • Tukey HB (1970) The leaching of substances from plants. Ann Rev Plant Physiol 21:305–324

    Article  Google Scholar 

  • Ulrich B (1983) Interaction of forest canopies with atmospheric constituents: SO2, alkali and earth alkali cations and chloride. In: Ulrich B, Pankrath J (eds) Effects of accumulation of air pollutants in forest ecosystems. Reidel, Dordrecht, The Netherlands, pp 33–45

    Chapter  Google Scholar 

  • Vasquez MA (1989) Mapa de Suelos de Costa Rica

  • Veneklaas EJ (1990) Nutrient fluxes in bulk precipitation and throughfall in two montane tropical rain forests, Colombia. J Ecol 78:974–992

    Article  Google Scholar 

  • Veneklaas EJ (1991) Litterfall and nutrient fluxes in two montane tropical rain forests, Colombia. J Trop Ecol 7:319–336

    Article  Google Scholar 

  • Vitousek PM (1984) Litterfall, nutrient cycling, and nutrient limitation in tropical forests. Ecology 65:285–298

    Article  Google Scholar 

  • Vitousek P (2004) Nutrient cycling and limitation. Hawai’i as a model system. Princeton University Press, Oxford and Princeton

    Google Scholar 

  • Wanek W, Pörtl K (2005) Phyllosphere nitrogen relations: reciprocal transfer of nitrogen between epiphyllous liverworts and host plants in the understorey of a lowland tropical wet forest in Costa Rica. New Phytol 166:577–588

    Article  Google Scholar 

  • Wanek W, Hofmann J, Feller IC (2007) Canopy interactions of rainfall in an off-shore mangrove ecosystem dominated by Rhizophora mangle (Belize). J Hydrol 345:70–79

    Article  Google Scholar 

  • Wanek W, Drage S, Hinko N, Hofhansl F, Pölz EM, Ratzer A, Richter A (2008) Primary Production and nutrient cycling in lowland rainforests of the Golfo Dulce region. In: Aubrecht G (ed) Natural and cultural history of the Golfo Dulce region, Costa Rica. Stapfia, Biologiezentrum des OÖ Landesmuseum, Linz, pp 155–177

    Google Scholar 

  • Weber A, Huber W, Weissenhofer A, Zamora N & Zimmermann G (2001) An introductory field guide to the flowering plants of the Golfo Dulce Rain Forests, Costa Rica. Biologiezentrum des OÖ Landesmuseums

  • Weissenhofer A (1996) Ökologie und Struktur eines Tieflandregenwaldes in der Pazifikregion von Costa Rica. Diploma Thesis: University of Vienna

  • Weissenhofer A, Huber W, Mayer V, Pamperl S, Weber A (2008) Natural and cultural history of the Golfo Dulce region, Costa Rica. Stapfia, Biologiezentrum des OÖ Landesmuseum, Linz

    Google Scholar 

  • Wood TE, Lawrence D, Clark DA (2006) Determinants of leaf litter nutrient cycling in a tropical rain forest: soil fertility versus topography. Ecosystems 9:700–710

    Article  Google Scholar 

  • Zhang G, Zeng GM, Jiang YM, Yao JM, Huang GH, Jiang XY, Tan W, Zhang XL, Zeng M (2006) Effects of weak acids on canopy leaching and uptake processes in a coniferous–deciduous mixed evergreen forest in central-south China. Water Air Soil Pollut 172:39–55

    Article  Google Scholar 

Download references

Acknowledgments

We thank the TRSLG for providing field access and logistic support in Costa Rica, especially Victor Cruz Garcia for assistance in field work, and the Ministerio de Ambiente y Energia (MINAE) for assisting with research permits.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Wanek.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 102 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hofhansl, F., Wanek, W., Drage, S. et al. Topography strongly affects atmospheric deposition and canopy exchange processes in different types of wet lowland rainforest, Southwest Costa Rica. Biogeochemistry 106, 371–396 (2011). https://doi.org/10.1007/s10533-010-9517-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10533-010-9517-3

Keywords

Navigation