Skip to main content
Log in

Calculating Dry Deposition and Canopy Exchange with the Canopy Budget Model: Review of Assumptions and Application to Two Deciduous Forests

  • Published:
Water, Air, and Soil Pollution Aims and scope Submit manuscript

Abstract

The canopy budget model simulates the interaction of major ions within forest canopies based on throughfall and precipitation measurements. The model has been used for estimating dry deposition and canopy exchange fluxes in a wide range of forest ecosystems, but different approaches have been reported. We give an overview of model variations with respect to the time step, type of open-field precipitation data, and tracer ion, and discuss the strengths and weaknesses of different assumptions on ion exchange within forest canopies. To examine the effect of model assumptions on the calculated fluxes, nine approaches were applied to data from two deciduous forest plots located in regions with contrasting atmospheric deposition, i.e. a beech (Fagus sylvatica L.) plot in Belgium and a mixed sugar maple (Acer saccharum Marsh.) plot in Quebec.

For both forest plots, a semi-annual time step in the model gave similar results as an annual time step. Na+ was found to be more suitable as a tracer ion in the filtering approach than Cl or \({\text{SO}}_4^{2 - } \). Using bulk instead of wet-only precipitation underestimated the potentially acidifying deposition. To compute canopy uptake of \({\text{NH}}_4^ + \) and H+, ion exchange with K+, Ca2+, and Mg2+ as well as simultaneous cation and anion leaching should be considered. Different equations to allocate \({\text{NH}}_4^ + \) vs H+ uptake had most effect on the estimated fluxes of the cation that was less important at a plot. More research is needed on the relative uptake efficiency of H+, \({\text{NH}}_4^ + \), and \({\text{NO}}_{_3 }^{\text{ - }} \) for varying tree species and environmental conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aber, J., McDowell, W., Nadelhoffer, K., Magill, A., Berntson, G., Kamakea, M., et al. (1998). Nitrogen saturation in temperate forest ecosystems: hypotheses revisited. BioScience, 48, 921–934.

    Article  Google Scholar 

  • Armbruster, M., MacDonald, J., Dise, N. B., & Matzner, E. (2002). Throughfall and output fluxes of Mg in European forest ecosystems: a regional assessment. Forest Ecology and Management, 164, 137–147.

    Article  Google Scholar 

  • Asche, N. (1988). Deposition, Interception und Pflanzenauswaschung im Kronenraum eines Eichen/Hainbuchen−Bestandes. Journal of Plant Nutrition and Soil Science, 151, 103–107.

    Article  CAS  Google Scholar 

  • Balestrini, R., Arisci, S., Brizzio, M. C., Mosello, R., Rogero, M., & Tagliaferri, A. (2007). Dry deposition of particles and canopy exchange: Comparison of wet, bulk and throughfall deposition at five forest sites in Italy. Atmospheric Environment, 41, 745–756.

    Article  CAS  Google Scholar 

  • Balestrini, R., & Tagliaferri, A. (2001). Atmospheric deposition and canopy exchange processes in alpine forest ecosystems (northern Italy). Atmospheric Environment, 35, 6421–6433.

    Article  CAS  Google Scholar 

  • Beier, C., Gundersen, P., & Rasmussen, L. (1992). A new method for estimation of dry deposition of particles based on throughfall measurements in a forest edge. Atmospheric Environment, 26A, 1553–1559.

    CAS  Google Scholar 

  • Bélanger, N., Paré, D., & Courchesne, F. (2004). Regression equations for estimation throughfall nutrient fluxes using wet deposition data and their applicability for simulating the soil acid–base status using the dynamic forest soil−atmosphere model SAFE. Ecological Modelling, 175, 151–167.

    Article  CAS  Google Scholar 

  • Berger, T. W., Eager, C., Likens, G. E., & Stingeder, G. (2001). Effects of calcium and aluminium chloride additions on foliar and throughfall chemistry in sugar maples. Forest Ecology and Management, 149, 75–90.

    Article  Google Scholar 

  • Bouwman, A. F., Van Vuuren, D. P., Derwent, R. G., & Posch, M. (2002). A global analysis of acidification and eutrophication of terrestrial ecosystems. Water, Air and Soil Pollution, 141, 349–382.

    Article  CAS  Google Scholar 

  • Bouya, D., Myttenaere, C., Weissen, F., & Van Praag, H. J. (1999). Needle permeability of Norway spruce (Picea abies (L.) Karst.) as influenced by magnesium nutrition. Belgian Journal of Botany, 132, 105–118.

    Google Scholar 

  • Bowden, R. D., Geballe, G. T., & Bowden, W. B. (1989). Foliar uptake of 15N from simulated cloud water by red spruce (Picea rubens) seedlings. Canadian Journal of Forest Research, 19, 382–386.

    Article  Google Scholar 

  • Boyce, R. L., Friedland, A. J., Chamberlain, C. P., & Poulson, S. R. (1996). Direct canopy nitrogen uptake from N-15-labeled wet deposition by mature red spruce. Canadian Journal of Forest Research, 26, 1539–1547.

    Article  Google Scholar 

  • Bredemeier, M. (1988). Forest canopy transformation of atmospheric deposition. Water, Air and Soil Pollution, 40, 121–138.

    CAS  Google Scholar 

  • Brumme, R., Leimcke, U., & Matzner, E. (1992). Interception and uptake of NH4 and NO3 from wet deposition by aboveground parts of young beech (Fagus sylvatica L.) trees. Plant and Soil, 142, 273–279.

    Article  CAS  Google Scholar 

  • Cappellato, R., Peters, N. E., & Meyers, T. P. (1998). Above-ground sulfur cycling in adjacent coniferous and deciduous forests and watershed sulfur retention in the Georgia Piedmont, U.S.A. Water, Air and Soil Pollution, 103, 151–171.

    Article  CAS  Google Scholar 

  • Cappellato, R., Peters, N. E., & Ragsdale, H. L. (1993). Acidic atmospheric deposition and canopy interactions of adjacent deciduous and coniferous forests in the Georgia Piedmont. Canadian Journal of Forest Research, 23, 1114–1125.

    Article  CAS  Google Scholar 

  • Chiwa, M., Crossley, A., Sheppard, L. J., Sakugawa, H., & Cape, J. N. (2004). Throughfall chemistry and canopy interactions in a Sitka spruce plantation sprayed with six different simulated polluted mist treatments. Environmental Pollution, 127, 57–64.

    Article  CAS  Google Scholar 

  • Collier, M. D., Fotelli, M. N., Nahm, M., Kopriva, S. R. H., Hanke, D. E., & Gessler, A. (2003). Regulation of nitrogen uptake by Fagus sylvatica on a whole plant level—interactions between cytokinins and soluble N compounds. Plant Cell and Environment, 26, 1549–1560.

    Article  CAS  Google Scholar 

  • Cronan, C. S., & Reiners, W. A. (1983). Canopy processing of acidic precipitation by coniferous and hardwood forests in New England. Oecologia, 59, 216–223.

    Article  Google Scholar 

  • De Schrijver, A., Nachtergale, L., Staelens, J., Luyssaert, S., & De Keersmaeker, L. (2004). Comparison of throughfall and soil solution chemistry between a high−-density Corsican pine stand and a naturally regenerated silver birch stand. Environmental Pollution, 131, 93–105.

    Article  CAS  Google Scholar 

  • de Vries, W., Reinds, G. J., & Vel, E. (2003). Intensive monitoring of forest ecosystems in Europe 2: Atmospheric deposition and its impact on soil solution chemistry. Forest Ecology and Management, 174, 97–115.

    Article  Google Scholar 

  • de Vries, W., Reinds, G. J., Deelstra, H. D., Klap, J. M., & Vel, E. M. (1998). Intensive monitoring of forest ecosystems in Europe. Technical report 1998. Brussels, Geneva: EC-UN/ECE.

    Google Scholar 

  • de Vries, W., Reinds, G. J., van der Salm, C., Draaijers, G. P. J., Bleeker, A., Erisman, J. W., et al. (2001). Intensive monitoring of forest ecosystems in Europe. Technical report 2001. Brussels, Geneva: EC-UN/ECE..

    Google Scholar 

  • Devlaeminck, R., De Schrijver, A., & Hermy, M. (2005). Variation in throughfall deposition across a deciduous beech (Fagus sylvatica L.) forest edge in Flanders. Science of the Total Environment, 337, 241–252.

    Article  CAS  Google Scholar 

  • Draaijers, G., Erisman, J., Lövblad, G., Spranger, T., & Vel, E. (1998). Quality and uncertainty aspects of forest deposition estimation using throughfall, stemflow and precipitation measurements. The Netherlands: TNO Institute of Environmental Sciences, Energy Research and Process Innovation TNO-MEP-Report 98/003.

    Google Scholar 

  • Draaijers, G. P. J. (1993). The variability of atmospheric deposition to forests. Ph.D. dissertation, The Netherlands: University of Utrecht.

    Google Scholar 

  • Draaijers, G. P. J., & Erisman, J. W. (1995). A canopy budget model to assess atmospheric deposition from throughfall measurements. Water, Air and Soil Pollution, 85, 2253–2258.

    Article  CAS  Google Scholar 

  • Draaijers, G. P. J., Erisman, J. W., Spranger, T., & Wyers, G. P. (1996). The application of throughfall measurements for atmospheric deposition monitoring. Atmospheric Environment, 30, 3349–3361.

    Article  CAS  Google Scholar 

  • Draaijers, G. P. J., Erisman, J. W., Van Leeuwen, N. F. M., Romer, F. G., te Winkel, B. H., Veltkamp, A. C., et al. (1997). The impact of canopy exchange on differences observed between atmospheric deposition and throughfall fluxes. Atmospheric Environment, 31, 387–397.

    Article  CAS  Google Scholar 

  • Driscoll, C. T., Fuller, R. D., & Schecher, W. D. (1989). The role of organic acids in the acidification of surface waters in the eastern US. Water, Air and Soil Pollution, 43, 21–40.

    Article  CAS  Google Scholar 

  • Duchesne, L., Ouimet, R., Camiré, C., & Houle, D. (2001). Seasonal nutrient transfers by foliar resorption, leaching, and litter fall in a northern hardwood forest at Lake Clair Watershed, Quebec, Canada. Canadian Journal of Forest Research, 31, 333–344.

    Article  CAS  Google Scholar 

  • Ferm, M., & Hultberg, H. (1999). Dry deposition and internal circulation of nitrogen, sulphur and base cations to a coniferous forest. Atmospheric Environment, 33, 4421–4430.

    Article  CAS  Google Scholar 

  • Gessler, A., Rienks, M., & Rennenberg, H. (2002). Stomatal uptake and cuticular adsorption contribute to dry deposition of NH3 and NO2 to needles of adult spruce (Picea abies) trees. New Phytologist, 156, 179–194.

    Article  CAS  Google Scholar 

  • Gessler, A., Schneider, S., von Sengbusch, D., Weber, P., Hanemann, H. C., Rothe, A., et al. (1998). Field and laboratory experiments on net uptake of nitrate and ammonium by the roots of spruce (Picea abies) and beech (Fagus sylvatica) trees. New Phytologist, 138, 275–285.

    Article  CAS  Google Scholar 

  • Harrison, A. F., Schulze, E. D., Gebauer, G., & Bruckner, G. (2000). Canopy uptake and utilization of atmospheric pollutant nitrogen. In E.-D. Schulze (Ed.) Carbon and nitrogen cycling in European forest ecosystems (pp. 172–188). Berlin: Springer-Verlag.

    Google Scholar 

  • Horváth, L. (2004). Determination of the nitrogen compound balance between the atmosphere and a Norway spruce forest ecosystem. Nutrient Cycling in Agroecosystems, 70, 143–146.

    Article  Google Scholar 

  • Houle, D., Ouimet, R., Paquin, R., & Laflamme, J.-G. (1999). Interactions of atmospheric deposition with a mixed hardwood and coniferous forest canopy at the Lake Clair Watershed (Duchesnay, Quebec). Canadian Journal of Forest Research, 29, 1944–1957.

    Article  CAS  Google Scholar 

  • Hovmand, M. F., & Kemp, K. (1996). Downward trends of sulphur deposition to Danish spruce forest. Atmospheric Environment, 30, 2989–2999.

    Article  CAS  Google Scholar 

  • Hug, R., Hepp, R., & von Wilpert, K. (2005). 18 Jahre Depositionsmessnetz der forstlichen Versuchs-und Forschungsanstalt Baden-Württemberg. Berichte Freiburger Forstliche Forschung. Heft 59. Freiburg, Germany.

  • Ignatova, N., & Dambrine, E. (2000). Canopy uptake of N deposition in spruce (Picea abies L. Karst) stands. Annals of Forest Science, 57, 113–120.

    Article  Google Scholar 

  • Langusch, J. J., Borken, W., Armbruster, M., Dise, N. B., & Matzner, E. (2003). Canopy leaching of cations in Central European forest ecosystems—a regional assessment. Journal of Plant Nutrition and Soil Science, 166, 168–174.

    Article  CAS  Google Scholar 

  • Lin, T. C., Hamburg, S., Hsia, Y. J., King, H. B., Wang, L. J., & Lin, K. C. (2001). Base cation leaching from the canopy of a subtropical rainforest in northeastern Taiwan. Canadian Journal of Forest Research, 31, 1156–1163.

    Article  CAS  Google Scholar 

  • Lin, T.-C., Hamburg, S. P., & King, H. B. (2000). Throughfall patterns in a subtropical rain forest of northeastern Taiwan. Journal of Environmental Quality, 29, 1186–1193.

    CAS  Google Scholar 

  • Lovett, G. M., & Lindberg, S. E. (1984). Dry deposition and canopy exchange in a mixed oak forest as determined by analysis of throughfall. Journal of Applied Ecology, 21, 1013–1027.

    Article  Google Scholar 

  • Lovett, G. M., & Lindberg, S. E. (1993). Atmospheric deposition and canopy interactions of nitrogen in forests. Canadian Journal of Forest Research, 23, 1603–1616.

    Article  CAS  Google Scholar 

  • Lovett, G. M., Nolan, S. S., Driscoll, C. T., & Fahey, T. J. (1996). Factors regulating throughfall flux in a New Hampshire forested landscape. Canadian Journal of Forest Research, 26, 2134–2144.

    Article  Google Scholar 

  • Lumme, I. (1994). Nitrogen uptake of Norway spruce (Picea abies Karst.) seedlings from simulated wet deposition. Forest Ecology and Management, 63, 87–96.

    Article  Google Scholar 

  • Macklon, A. E. S., Sheppard, L. J., Sim, S., & Leith, I. D. (1996). Uptake of ammonium and nitrate ions from acid mist applied to Sitka spruce (Picea sitchensis (Bong.) Carr.) grafts over the course of one growing season. Trees—Structure and Function, 10, 261–267.

    Google Scholar 

  • Mayer, R., & Ulrich, B. (1978). Input of atmospheric sulphur by dry and wet deposition to two central European forest ecosystems. Atmospheric Environment, 12, 375–377.

    Article  CAS  Google Scholar 

  • Meiwes, K. J., & Khanna, P. K. (1981). Distribution and cycling of sulphur in the vegetation of two forest ecosystems in an acid rain environment. Plant and Soil, 60, 369–375.

    Article  CAS  Google Scholar 

  • Morris, D. M., Gordon, A. G., & Gordon, A. M. (2003). Patterns of canopy interception and throughfall along a topographic sequence for black spruce dominated forest ecosystems in northwestern Ontario. Canadian Journal of Forest Research, 33, 1046–1060.

    Article  Google Scholar 

  • Mussche, S., Samson, R., Nachtergale, L., De Schrijver, A., Lemeur, R., & Lust, N. (2001). A comparison of optical and direct methods for monitoring the seasonal dynamics of leaf area index in deciduous forests. Silva Fennica, 35, 373–384.

    Google Scholar 

  • Neary, A. J., & Gizyn, W. I. (1994). Throughfall and stemflow chemistry under deciduous and coniferous forest canopies in south−central Ontario. Canadian Journal of Forest Research, 24, 1089–1100.

    Article  CAS  Google Scholar 

  • Oyarzún, C. E., Godoy, R., De Schrijver, A., Staelens, J., & Lust, N. (2004). Water chemistry and nutrient budgets in an undisturbed evergreen rainforest of southern Chile. Biogeochemistry, 71, 107–123.

    Article  Google Scholar 

  • Papen, H., Gessler, A., Zumbusch, E., & Rennenberg, H. (2002). Chemolithoautotrophic nitrifiers in the phyllosphere of a spruce ecosystem receiving high atmospheric nitrogen input. Current Microbiology, 44, 56–60.

    Article  CAS  Google Scholar 

  • Pérez-Soba, M., & van der Eerden, L. J. M. (1993). Nitrogen uptake in needles of Scots pine (Pinus sylvestris L.) when exposed to gaseous ammonia and ammonium fertilizer in the soil. Plant and Soil, 153, 231–242.

    Article  Google Scholar 

  • Potter, C. S. (1991). Nutrient leaching from Acer rubrum leaves by experimental acid rainfall. Canadian Journal of Forest Research, 21, 222–229.

    Article  CAS  Google Scholar 

  • Puxbaum, H., & Gregori, M. (1998). Seasonal and annual deposition rates of sulphur, nitrogen and chloride species to an oak forest in North-Eastern Austria (Wolkersdorf, 240 m asl). Atmospheric Environment, 32, 3557–3568.

    Article  CAS  Google Scholar 

  • Quilchano, C., Haneklaus, S., Gallardo, J. F., Schnug, E., & Moreno, G. (2002). Sulphur balance in a broadleaf, non-polluted forest ecosystem (central–western Spain). Forest Ecology and Management, 161, 205–214.

    Article  Google Scholar 

  • Reiners, W. A., & Olson, R. K. (1984). Effects of canopy components on throughfall chemistry—an experimental analysis. Oecologia, 63, 320–330.

    Article  Google Scholar 

  • Rennenberg, H., Kreutzer, K., Papen, H., & Weber, P. (1998). Consequences of high loads of nitrogen for spruce (Picea abies) and beech (Fagus sylvatica) forests. New Phytologist, 139, 71–86.

    Article  CAS  Google Scholar 

  • Roelofs, J. G. M., Kempers, A. J., Houdijk, A. L. F. M., & Jansen, J. (1985). The effect of air-borne ammonium sulphate on Pinus nigra var. maritima in the Netherlands. Plant and Soil, 84, 45–56.

    Article  CAS  Google Scholar 

  • Ruijgrok, W., Tieben, H., & Eisinga, P. (1997). The dry deposition of particles to a forest canopy: a comparison of model and experimental results. Atmospheric Environment, 31, 399–415.

    Article  Google Scholar 

  • Schaefer, D. A., Lindberg, S. E., & Lovett, G. M. (1992). Processing of acidic deposition: canopy interactions. Chapt. 11. In D. W. Johnson, & S.E. Lindberg (Eds.) Atmospheric deposition and forest nutrient cycling, Ecological Studies 91 (pp. 444–449). New York: Springer-Verlag..

    Google Scholar 

  • Schmitt, M., Thöni, L., Waldner, P., & Thimonier, A. (2005). Total deposition of nitrogen on Swiss long-term forest ecosystem research (LWF) plots: comparison of the throughfall and the inferential method. Atmospheric Environment, 39, 1079–1091.

    Article  CAS  Google Scholar 

  • Sievering, H., Fernandez, I., & Lee, J. (2000). Forest canopy uptake of atmospheric nitrogen deposition at eastern US conifer sites: carbon storage implications? Global Biogeochemical Cycles, 14, 1153–1159.

    Article  CAS  Google Scholar 

  • Staaf, H. (1982). Plant nutrient changes in beech leaves during senescence as influenced by site characteristics. Acta Oecologia, 3, 161–170.

    Google Scholar 

  • Stachurski, A., & Zimka, J. R. (2000). Atmospheric input of elements to forest ecosystems: a method of estimation using artificial foliage placed above rain collectors. Environmental Pollution, 110, 345–356.

    Article  CAS  Google Scholar 

  • Stachurski, A., & Zimka, J. R. (2002). Atmospheric deposition and ionic interactions within a beech canopy in the Karkonosze Mountains. Environmental Pollution, 118, 75–87.

    Article  CAS  Google Scholar 

  • Staelens, J., De Schrijver, A., Van Avermaet, P., Genouw, G., & Verhoest, N. (2005). A comparison of bulk and wet-only deposition at two adjacent sites in Melle (Belgium). Atmospheric Environment, 39, 7–15.

    Article  CAS  Google Scholar 

  • Staelens, J., De Schrijver, A., & Verheyen, K. (2007). Seasonal variation in throughfall and stemflow chemistry beneath a European beech (Fagus sylvatica L.) tree in relation to canopy phenology. Canadian Journal of Forest Research, 37, 1359–1372.

    Article  CAS  Google Scholar 

  • Staelens, J., De Schrijver, A., Verheyen, K., & Verhoest, N. E. C. (2006). Spatial variability and temporal stability of throughfall deposition under beech (Fagus sylvatica L.) tree in relationship to canopy structure. Environmental Pollution, 142, 254–263.

    Article  CAS  Google Scholar 

  • Thimonier, A., Schmitt, M., Waldner, P., & Rihm, B. (2005). Atmospheric deposition on Swiss long-term forest ecosystem research (LWF) plots. Environmental Monitoring and Assessment, 104, 81–118.

    Article  CAS  Google Scholar 

  • Ukonmaanaho, L., & Starr, M. (2002). Major nutrients and acidity: budgets and trends at four remote boreal stands in Finland during the 1990s. Science of the Total Environment, 297, 21–41.

    Article  CAS  Google Scholar 

  • Ulrich, B. (1983). Interaction of forest canopies with atmospheric constituents: SO2, alkali and earth alkali cations and chloride. Effects of accumulation of air pollutants in forest ecosystems (pp. 33–45). Dordrecht: Reidel Publishing Company.

    Google Scholar 

  • Umweltbundesamt (UBA) (2004). Mapping manual 2004. Manual on methodologies and criteria for modelling and mapping critical loads and levels and air pollution effects, risks and trends. Retrieved May 25, 2005 from http://www.icpmapping.org.

  • Van der Maas, M. P., & Pape, Th. (1991). Hydrochemistry of two Douglas fir ecosystems and a heather ecosystem in the Veluwe, the Netherlands (2nd phase). RIVM report no. 102.1–01. The Netherlands: Agricultural University of Wageningen.

    Google Scholar 

  • Van der Maas, M. P., Van Breemen, N. & Van Langenvelde, I. (1991). Estimation of atmospheric deposition and canopy exchange in two Douglas forest stands in the Netherlands. Internal publication, Department of Soil Science and Geology, Agricultural University of Wageningen, The Netherlands. In G. Draaijers, J. Erisman, G. Lövblad, T. Spranger & E. Vel (Eds.). Quality and uncertainty aspects of forest deposition estimation using throughfall, stemflow and precipitation measurements. TNO-MEP-Report 98/003. TNO Institute of Environmental Sciences, Energy Research and Process Innovation, Apeldoorn, the Netherlands.

  • Van Ek, R., & Draaijers, G. P. J. (1994). Estimates of atmospheric deposition and canopy exchange for three common tree species in the Netherlands. Water, Air and Soil Pollution, 73, 61–82.

    Article  Google Scholar 

  • White, E. J., & Turner, F. (1970). A method of estimating income of nutrients in a catch of airborne particles by a woodland canopy. Journal of Applied Ecology, 4, 441–461.

    Google Scholar 

  • Wilson, E. J., & Tiley, C. (1998). Foliar uptake of wet-deposited nitrogen by Norway spruce: an experiment using 15N. Atmospheric Environment, 32, 513–518.

    Article  CAS  Google Scholar 

  • Yoshida, S., & Ichikuni, M. (1989). Role of forest canopies in the collection and neutralization of airborne acid substances. Science of the Total Environment, 84, 35–43.

    Article  CAS  Google Scholar 

  • Zeng, G. M., Zhang, G., Huang, G. H., Jiang, Y. M., & Liu, H. L. (2005). Exchange of Ca2+, Mg2+ and K+ and uptake of H+, NH4 + for the subtropical forest canopies influenced by acid rain in Shaoshan forest located in Central South China. Plant Science, 168, 259–266.

    Article  CAS  Google Scholar 

  • Zhang, G., Zeng, G. M., Jiang, Y. M., Huang, G. H., Yao, J. M., Xiang, R. J., et al. (2006b). Seasonal ionic exchange in two-layer canopies and total deposition in a subtropical evergreen mixed forest in central–south China. Annals of Forest Science, 63, 887–896.

    Article  CAS  Google Scholar 

  • Zhang, G., Zeng, G. M., Jiang, Y. M., Yao, J. M., Huang, G. H., Jiang, X. Y., et al. (2006a). Effects of weak acids on canopy leaching and uptake processes in a coniferous–deciduous mixed evergreen forest in central−south China. Water, Air and Soil Pollution, 172, 39–55.

    Article  CAS  Google Scholar 

  • Zhang, L., Moran, M. D., Makar, P. A., Brook, J. R., & Gong, S. (2002). Modelling gaseous dry deposition in AURAMS: a unified regional air-quality modelling system. Atmospheric Environment, 36, 537–560.

    Article  CAS  Google Scholar 

  • Zimmermann, F., Plessow, K., Queck, R., Bernhofer, C., & Matschullat, J. (2006). Atmospheric N- and S-fluxes to a spruce forest—Comparison of inferential modelling and the throughfall method. Atmospheric Environment, 40, 4782–4796.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Luc Willems and Greet De bruyn for assisting in the laboratory work. Philip Van Avermaet of the Flemish Environment Agency is acknowledged for the kind permission to use a wet-only sampler. The first and the third author were funded as postdoctoral fellows of the Research Foundation-Flanders (FWO) and the Special Research Fund of Ghent University (BOF), respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeroen Staelens.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Staelens, J., Houle, D., De Schrijver, A. et al. Calculating Dry Deposition and Canopy Exchange with the Canopy Budget Model: Review of Assumptions and Application to Two Deciduous Forests. Water Air Soil Pollut 191, 149–169 (2008). https://doi.org/10.1007/s11270-008-9614-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-008-9614-2

Keywords

Navigation